中国物理B ›› 2020, Vol. 29 ›› Issue (3): 38503-038503.doi: 10.1088/1674-1056/ab6960
• INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY • 上一篇 下一篇
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天)
Jia-Fei Yao(姚佳飞)1,2, Yu-Feng Guo(郭宇锋)1,2, Zhen-Yu Zhang(张振宇)1,2, Ke-Meng Yang(杨可萌)1,2, Mao-Lin Zhang(张茂林)1,2, Tian Xia(夏天)3
摘要: This paper presents a new silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor transistor (LDMOST) device with alternated high-k dielectric and step doped silicon pillars (HKSD device). Due to the modulation of step doping technology and high-k dielectric on the electric field and doped profile of each zone, the HKSD device shows a greater performance. The analytical models of the potential, electric field, optimal breakdown voltage, and optimal doped profile are derived. The analytical results and the simulated results are basically consistent, which confirms the proposed model suitable for the HKSD device. The potential and electric field modulation mechanism are investigated based on the simulation and analytical models. Furthermore, the influence of the parameters on the breakdown voltage (BV) and specific on-resistance (Ron,sp) are obtained. The results indicate that the HKSD device has a higher BV and lower Ron,sp compared to the SD device and HK device.
中图分类号: (Semiconductor-device characterization, design, and modeling)