Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 034301    DOI: 10.1088/1674-1056/27/3/034301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Random phase screen influence of the inhomogeneous tissue layer on the generation of acoustic vortices

Zhiyao Ma(马致遥)1, Jun Ma(马骏)2, Dong Zhang(章东)3, Juan Tu(屠娟)3
1 Tsien Hsue-shen College, Nanjing University of Science and Technology, Nanjing 210094, China;
2 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
3 Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  

The influence of the inhomogeneous tissue layer on the generation of acoustic vortices (AV) is studied theoretically and experimentally based on the phase screen model. By considering the time-shift of a random phase screen, the formula of acoustic pressure for the AV beam generated by a circular array of eight planar piston sources is derived. With the actual correlation length of the abdominal wall, numerical simulations before and after the insertion of the inhomogeneous tissue layer are conducted, and also demonstrated by experimental measurements. It is proved that, when the thickness variation of the phase screen is less than one wavelength, no significant influence on the generation of AVs can be produced. The variations of vortex nodes and antinodes in terms of the location, shape, and size of AVs are not obvious. Although the circular pressure distribution might be deformed by the phase interference with a larger thickness variation, AVs can still be generated around the center axis with perfect phase spirals in a reduced effective radius. The favorable results provide the feasibility of AV generation inside the human body and suggest the application potential of AVs in object manipulation for biomedical engineering.

Keywords:  acoustic vortices      random phase screen      phase spiral      correlation length  
Received:  04 November 2017      Revised:  01 December 2017      Accepted manuscript online: 
PACS:  43.25.Qp (Radiation pressure?)  
  43.60.Fg (Acoustic array systems and processing, beam-forming)  
  43.38.Hz (Transducer arrays, acoustic interaction effects in arrays)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61575095, 11374155, and 11674173).

Corresponding Authors:  Jun Ma, Dong Zhang     E-mail:  majun@njust.edu.cn;dzhang@nju.edu.cn

Cite this article: 

Zhiyao Ma(马致遥), Jun Ma(马骏), Dong Zhang(章东), Juan Tu(屠娟) Random phase screen influence of the inhomogeneous tissue layer on the generation of acoustic vortices 2018 Chin. Phys. B 27 034301

[1] Nye J F and Berry M V 1974 Proc. R. Soc. Lond. A 336 165
[2] Allen L, Beijersbergen M W, Spreeuw R J, et al. 1992 Phys. Rev. A 45 8185
[3] Neuman K C and Block S M 2004 Rev. Sci. Instr. 75 2787
[4] Hoshi T, Ochiai Y and Rekimoto J 2014 Jpn. J. Appl. Phys. 53 07KE07
[5] Li F, Cai F, Liu Z, et al. 2014 Phys. Rev. Appl. 1 051001
[6] Broadbent E G and Moore D W 1979 Royal Society 290 353
[7] Lekner J 2007 Phys. Rev. E 75 036610
[8] Torabi R and Rezaei Z 2013 Phys. Lett. A 377 1668
[9] Hefner B T and Marston P L 1999 J. Acoust. Soc. Am. 106 3313
[10] Anhäuser A, Wunenburger R and Brasselet E 2012 Phys. Rev. Lett. 109 034301
[11] Demore C E M, Zhengyi Y, Alexander V, et al. 2012 Phys. Rev. Lett. 108 194301
[12] Yang L, Ma Q, Tu J, et al. 2013 J. Appl. Phys. 113 154904
[13] Gao L, Zheng H, Ma Q, et al. 2014 J. Appl. Phys. 116 024905
[14] Zheng H, Gao L, Ma Q, et al. 2014 J. Appl. Phys. 115 084909
[15] Li Y, Guo G, Ma Q, et al. 2017 J. Appl. Phys. 121 164901
[16] Amin V, Ron Roberts R, Long T, et al. 2006 AIP Conf. Proc. 829 201
[17] Xue H, Liu X Z, Gong X F and Zhang D 2005 Acta Phys. Sin. 54 5233 (in Chinese)
[18] Liu X, Li J, Chang Y, et al. 2007 Phys. Lett. A 362 50
[19] Liu D and Waag R 1997 J. Acoust. Soc. Am. 101 1172
[20] Uscinski B J, Macaskill J C, Ewart T E 1983 J. Acoust. Soc. Am. 74 1474
[21] Liu Z, Fan T, Guo X, et al. 2010 Chin. Phys. Lett. 27 094303
[22] Liu Z, Fan T, Zhang D, et al. 2009 Chin. Phys. B 18 4932
[23] Mast T D, Hinkelman L M, Orr M J, et al. 1997 J. Acoust. Soc. Am. 102 1177
[24] Volke-Sepúlveda K, Santillán A O and Boullosa R R 2008 Phys. Rev. Lett. 100 024302
[25] Krammer P and Hassler D 1987 Proc. IEEE Ultrason. Symp. 939
[26] Sumino Y and Waag R C 1991 J. Acoust. Soc. Am. 90 2924
[27] Mast T D, Hinkelman L, Orr M J, et al. 1998 J. Acoust. Soc. Am. 104 3651
[28] Uscinski B J 1997 The Elements of Wave Propagation in Random Media (New York:McGraw-Hill)
[29] Shao W and Xian H 2016 Chin. Phys. B 25 114212
[1] Viscosities and their correlations with structures of Cu-Ag melts
Zhao Yan (赵岩), Hou Xiao-Xia (侯晓霞). Chin. Phys. B, 2015, 24(9): 096601.
[2] Monte Carlo study of the magnetic properties of spin liquid compound NiGa2S4
Zhang Kai-Cheng (张开成), Li Yong-Feng (李永峰), Liu Yong (刘永), Chi Feng (迟锋). Chin. Phys. B, 2014, 23(5): 057501.
[3] Preliminary research on the relationship between long-range correlations and predictability
Zhang Zhi-Sen(张志森), Gong Zhi-Qiang(龚志强), Zhi Rong(支蓉), Feng Guo-Lin(封国林), and Hu Jing-Guo(胡经国). Chin. Phys. B, 2011, 20(1): 019201.
No Suggested Reading articles found!