Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 127307    DOI: 10.1088/1674-1056/22/12/127307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A monolithic distributed phase shifter based on right-handed nonlinear transmission lines at 30 GHz

Huang Jie (黄杰)a b, Zhao Qian (赵倩)c, Yang Hao (杨浩)d, Dong Jun-Rong (董军荣)d, Zhang Hai-Ying (张海英)d
a School of Engineering and Technology, Southwest University, Chongqing 400715, China;
b State Key Laboratory of Millimeter Waves, Nanjing 210096, China;
c School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
d Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, which is based on right-handed nonlinear transmission lines and consists of a coplanar waveguide transmission line and periodically distributed GaAs planar Schottky varactor diode. The distributed-Schottky transmission-line-type phase shifter at a bias voltage greater than 1.5 V presents a continuous 0°–360° differential phase shift over a frequency range from 0 to 33 GHz. It is demonstrated that the minimum insertion loss is about 0.5 dB and that the return loss is less than-10 dB over the frequency band of 0–33 GHz at a reverse bias voltage less than 4.5 V. These excellent characteristics, such as broad differential phase shift, low insertion loss, and return loss, indicate that the proposed phase shifter can entirely be integrated into a phased array radar circuit.
Keywords:  GaAs planar Schottky diode      phase shifter      right-handed nonlinear transmission lines      monolithic microwave integrated circuit  
Received:  25 June 2013      Revised:  28 August 2013      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  84.40.Az (Waveguides, transmission lines, striplines)  
  84.40.Dc (Microwave circuits)  
Fund: Project supported by the Fundamental Research Funds for Central Universities, China (Grant No. XDJK2013B004), the Research Fund for the Doctoral Program of Southwest University, China ( Grant No. SWU111030),and the State Key Laboratory for Millimeter Waves of Southeast University, China (Grant No. K201312).
Corresponding Authors:  Huang Jie     E-mail:  jiehuang@swu.edu.cn

Cite this article: 

Huang Jie (黄杰), Zhao Qian (赵倩), Yang Hao (杨浩), Dong Jun-Rong (董军荣), Zhang Hai-Ying (张海英) A monolithic distributed phase shifter based on right-handed nonlinear transmission lines at 30 GHz 2013 Chin. Phys. B 22 127307

[1] Ji T, Yoon H, Abraham J K and Varadan V K 2006 IEEE Trans. Microwave Theory Tech. 54 1131
[2] Bahl I J and Conway D 2008 IEEE Trans. Microwave Theory Tech. 56 293
[3] Ellinger F, Jackel H and Bachtold W 2003 IEEE Trans. Microwave Theory Tech. 51 1135
[4] Chen C L, Courtney W E, Mahoney L J, Manfra M J, Chun A and Atwater H A 1987 IEEE Trans. Microwave Theory Tech. 35 315
[5] Tang H J, Yang C R, Zhang J H, Chen H W, Yu A, He W and Liao Y 2010 J. Infrared Milli. Terahz. Waves 31 852
[6] Suherman P M, Jackson T J, Tse Y Y, Jones I P, Chakalova R I, Lancaster M J and Porch A 2006 J. Appl. Phys. 99 104101
[7] Barker N S and Rebeiz G M 2000 IEEE Trans. Microwave Theory Tech. 48 1957
[8] Nagra A S, Xu J, Erker E and York R A 1999 IEEE Trans. Microwave Guid. Wave Lett. 9 31
[9] Nagra A S and York R A 1999 IEEE Trans. Microwave Theory Tech. 47 1705
[10] Kim H, Kozyrev A B, Karbassi A and Van der Weide D W 2007 IEEE Trans. Microwave Theory Tech. 55 571
[11] Kim H, Ho S J, Choi M K, Kozyrev A B and Van der Weide D W 2006 IEEE Trans. Microwave Theory Tech. 54 4178
[12] Salameh D and Linton D 1999 IEEE Trans. Microwave Theory Tech. 47 1118
[13] Fernandez M, Delos E, Melique X, Arscott S and Lippens D 2001 IEEE Trans. Microwave Wireless Compon. Lett. 11 498
[14] Chen S W, Ho C T, Pande K and Rice P D 1993 IEEE Trans. Microwave Theory Tech. 41 2317
[15] Qun X 2005 "Millimeter and Sub-millimeter Wave Heterostructure Barrier Varactor Frequency Multipliers" (Ph. D. dissertation) (Virginia: University of Virginia) (in USA)
[16] Dong J R, Yang H, Tian C, Huang J and Zhang H Y 2012 Chin. Phys. B 21 067303
[17] Wark J W R, Masayuki K, Ruai Y, Michael C, Eric C and Kirk S G 1991 IEEE Trans. Microwave Theory Tech. 39 1194
[18] Huang J, Yang H, Tian C, Dong J R, Zhang H Y and Guo T Y 2010 Chin. Phys. B 19 127203
[19] Bai Y, Jia R, Wu D Q, Jin Z and Liu X Y 2013 Chin. Phys. B 22 027202
[20] Li H O, Huang W, Tang C W, Deng X F and Lau K M 2011 Chin. Phys. B 20 068502
[1] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[2] Performance analysis of quantum access network using code division multiple access model
Linxi Hu(胡林曦), Can Yang(杨灿), Guangqiang He(何广强). Chin. Phys. B, 2017, 26(6): 060304.
[3] Broadband microwave frequency doubler based on left-handed nonlinear transmission lines
Jie Huang(黄杰), Wenwen Gu(顾雯雯), Qian Zhao(赵倩). Chin. Phys. B, 2017, 26(3): 037306.
[4] Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control
Li Jing (李晶), Ning Ti-Gang (宁提纲), Pei Li (裴丽), Jian Wei (简伟), You Hai-Dong (油海东), Wen Xiao-Dong (温晓东), Chen Hong-Yao (陈宏尧), Zhang Chan (张婵), Zheng Jing-Jing (郑晶晶). Chin. Phys. B, 2014, 23(10): 104216.
No Suggested Reading articles found!