Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090505    DOI: 10.1088/1674-1056/20/9/090505
GENERAL Prev   Next  

A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs

Mohammad Pourmahmood Aghababa
Young Researchers Club, Ahar Branch, Islamic Azad University, Ahar 54516, Iran
Abstract  In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.
Keywords:  chaotic gyro      finite-time synchronization      model uncertainty      nonlinear input  
Received:  30 March 2011      Revised:  28 April 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  

Cite this article: 

Mohammad Pourmahmood Aghababa A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs 2011 Chin. Phys. B 20 090505

[1] Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)
[2] Pourmahmood M, Khanmohammadi S and Alizadeh G 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2853
[3] Aghababa M P, Khanmohammadi S and Alizadeh G 2011 Appl. Math. Model. 35 3080
[4] Lü L, Li G , Guo L, Meng L, Zou J R and Yang M 2010 Chin. Phys. B 19 080507
[5] Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 Chin. Phys. 16 660
[6] Wang B and Wen G 2007 Phys. Lett. A 370 35
[7] Li G H, Zhou S P and Xu D M 2004 Chin. Phys. 13 168
[8] Chen F X and Zhang W D 2007 Chin. Phys. 16 937
[9] Zhang X Y, Guan X P and Li H G 2005 Chin. Phys. 14 279
[10] Hu J and Zhang Q J 2008 Chin. Phys. B 17 503
[11] Yu W, Chen G and Lü J 2009 Automatica 45 429
[12] Yu W, Cao J, Chen G, Lü J, Han J and Wei W 2009 IEEE Trans. Syst., Man Cyber. 39 230
[13] Yu W, Cao J and Lü J 2008 SIAM J. Appl. Dyn. Syst. 7 108
[14] Zhou J, Lu J and Lü J 2008 Automatica 44 996
[15] Zhang Q, Lu J, Lü J and Tse C K 2008 IEEE Trans. Circuit. Syst. 55 183
[16] Zhou J, Lu J and Lü J 2006 IEEE Trans. Automatic Control 51 652
[17] Lü J and Chen G 2005 IEEE Trans. Automatic Control 50 841
[18] Chen H K 2002 J. Sound Vibr. 255 719
[19] van Dooren R 2003 J. Sound Vibr. 268 632
[20] Ge Z M and Chen H K 1996 J. Sound Vibr. 194 107
[21] Tong X and Mrad N 2001 J. Appl. Mech. Trans. Amer. Soc. Mech. Eng. 68 681
[22] Chen H K and Lin T N 2003 Proc. Inst. of Mech. Eng. Part C: J. Mech. Eng. Sci. 217 331
[23] Zhou D, Shen T and Tamura K 2006 ASME J. Dynamic. Syst. Measur. Control. 128 592
[24] Lei Y, Xu W and Zheng H 2005 Phys. Lett. A 343 153
[25] Yau H 2007 Chaos Soliton. Fract. 34 1357
[26] Yau H 2008 Chaos Mech. Syst. Signal. Process 22 408
[27] Salarieh H and Alasty A 2008 J. Sound Vibr. 313 760
[28] Yan J J, Hung M L and Liao T L 2006 J. Sound Vibr. 298 298
[29] Hung M, Yan J and Liao T 2008 Chaos Soliton. Fract. 35 181
[30] Bhat S P and Bernstein D S 2000 SIAM J. Control Optimiz. 38 751
[31] Yau H and Yan J J 2008 Appl. Math. Comput. 197 775
[32] Slotine J and Li W 1991 Applied Nonlinear Control (New Jersey: Prentice Hall)
[33] Lü J, Han F, Yu X and Chen G 2004 Automatica 40 1677
[34] Lü J, Chen G, Yu X and Leung H 2004 IEEE Trans. Circuit. Syst. 51 2476
[35] Yu S, Lü J, Leung H and Chen G 2005 IEEE Trans. Circuit. Syst. 52 1459
[36] Lü J and Chen G 2006 Int. J. Bifurcat. Chaos 16 775
[37] Lü J, Yu S, Leung H and Chen G 2006 IEEE Trans. Circuit. Syst. 53 149
[38] Yu S, Lü J and Chen G 2007 IEEE Trans. Circuit. Syst. 54 2087
[1] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[2] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[3] Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs
Mohammad Pourmahmood Aghababa and Hassan Feizi . Chin. Phys. B, 2012, 21(6): 060506.
[4] Chaos suppression of uncertain gyros in a given finite time
Mohammad Pourmahmood Aghababa, Hasan Pourmahmood Aghababa. Chin. Phys. B, 2012, 21(11): 110505.
[5] Finite-time control of chaotic systems with nonlinear inputs
Gao Tie-Gang (高铁杠), Chen Zeng-Qiang (陈增强), Chen Guan-Rong (陈关荣), Yuan Zhu-Zhi (袁著祉). Chin. Phys. B, 2006, 15(6): 1190-1195.
No Suggested Reading articles found!