Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120307    DOI: 10.1088/1674-1056/20/12/120307
GENERAL Prev   Next  

Implementation of nonlocal Bell-state measurement and quantum information transfer with weak Kerr nonlinearity

Bai Juan(白娟)a), Guo Qi(郭奇)a), Cheng Liu-Yong(程留永)a), Shao Xiao-Qiang(邵晓强)b), Wang Hong-Fu(王洪福)a), Zhang Shou(张寿)a), and Yeon Kyu-Hwangc)
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China; b Centre for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China; c BK21 Program Physics & Department of Physics, College of Natural Science, Chungbuk National University, Cheonju, Chungbuk 361–763, Republic of Korea
Abstract  We propose a protocol to implement the nonlocal Bell-state measurement, which is nearly determinate with the help of weak cross-Kerr nonlinearities and quantum non-destructive photon number resolving detection. Based on the nonlocal Bell-state measurement, we implement the quantum information transfer from one place to another. The process is different from conventional teleportation but can be regarded as a novel form of teleportation without entangled channel and classic communication.
Keywords:  weak cross-Kerr nonlinearities      nonlocal Bell-state measurement      quantum information transfer  
Received:  02 June 2011      Revised:  04 July 2011      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11064016).

Cite this article: 

Bai Juan(白娟), Guo Qi(郭奇), Cheng Liu-Yong(程留永), Shao Xiao-Qiang(邵晓强), Wang Hong-Fu(王洪福), Zhang Shou(张寿), and Yeon Kyu-Hwang Implementation of nonlocal Bell-state measurement and quantum information transfer with weak Kerr nonlinearity 2011 Chin. Phys. B 20 120307

[1] Knill E, Laflamme R and Milbumt G J 2001 Nature 409 46
[2] Pittman T B, Fitch M J, Jacobs B C and Franson J D 2003 Phys. Rev. A 68 032316
[3] O'Brien J L, Pryde G J, White A G, Ralph T C and Branning D 2003 Nature 426 264
[4] Gasparoni S, Pan J W, Walther P, Rudolph T and Zeilinger A 2004 Phys. Rev. Lett. 93 020504
[5] Scheel S, Nemoto K, Munro W J and Knight P L 2003 Phys. Rev. A 68 032310
[6] Scheel S and Audenaert K M R 2005 New J. Phys. 7 149
[7] Milburn G J and Walls D F 1984 Phys. Rev. A 30 56
[8] Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287
[9] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[10] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302(R)
[11] Munro W J, Nemoto K and Spliller T P 2005 New J. Phys. 7 137
[12] Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L and Zhang Z M 2010 Chin. Phys. B 19 094207
[13] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[14] Schmidt H and Imamogdlu A 1996 Opt. Lett. 21 1936
[15] Harris S E and Hau L V 1999 Phys. Rev. Lett. 82 4611
[16] Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710
[17] Grangier P, Levenson J A and Poizat J 1998 Nature 369 537
[18] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[19] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[20] Ye L, Yao C M and Guo G C 2001 Chin. Phys. 10 1001
[21] Ekert A K 1991 Phys. Rev. Lett. 67 661
[22] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[23] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[24] Cheng W W, Huang Y X, Liu T K and Li H 2007 Chin. Phys. 16 38
[25] Kwiat P G and Weinfurter H 1998 Phys. Rev. A 58 2623
[26] Kim Y H, Kulik S P and Shih Y 2001 Phys. Rev. Lett. 86 1370
[27] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[28] He Y and Jiang N Q 2010 Chin. Phys. B 19 090310
[29] Jeong H, Kim M S and Lee J 2001 Phys. Rev. A 64 052308
[30] Jeong H and Kim M S 2002 it Quantum Inf. Comput. 2 208
[31] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[32] Zheng S B 2004 Phys. Rev. A 69 064302
[33] Wang X W, Liu X and Fang M F 2006 Chin. Phys. 15 676
[34] Jeong H 2006 Phys. Rev. A 73 052320
[1] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[2] Efficient scheme for entangled states and quantum information transfer with trapped atoms in a resonator
Li Peng-Bo(李蓬勃) and Li Fu-Li(李福利) . Chin. Phys. B, 2011, 20(9): 090304.
[3] Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator
Shi Zhen-Gang(施振刚), Chen Xiong-Wen(谌雄文), Zhu Xi-Xiang(朱喜香), and Song Ke-Hui(宋克慧). Chin. Phys. B, 2009, 18(3): 910-914.
No Suggested Reading articles found!