Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050701    DOI: 10.1088/1674-1056/19/5/050701
GENERAL Prev   Next  

Theory of higher harmonics imaging in tapping-mode atomic force microscopy

Li Yuan(李渊), Qian Jian-Qiang(钱建强), and Li Ying-Zi(李英姿)
Department of Applied Physics, Beihang University, Beijing 100191, China
Abstract  The periodic impact force induced by tip-sample contact in tapping mode atomic force microscope (AFM) gives rise to non-harmonic response of a micro-cantilever. These non-harmonic signals contain the full characteristics of tip-sample interaction. A complete theoretical model describing the dynamical behaviour of tip--sample system was developed in this paper. An analytic formula was introduced to describe the relationship between time-varying tip--sample impact force and tip motion. The theoretical analysis and numerical results both show that the time-varying tip--sample impact force can be reconstructed by recording tip motion. This allows for the reconstruction of the characteristics of the tip--sample force, like contact time and maximum contact force. It can also explain the ability of AFM higher harmonics imaging in mapping stiffness and surface energy variations.
Keywords:  tapping mode atomic force microscopy      higher harmonics imaging  
Received:  14 September 2009      Revised:  28 October 2009      Accepted manuscript online: 
PACS:  07.79.Lh (Atomic force microscopes)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the National High-Tech Research and Development Program of China (Grant No.~2007AA12Z128).

Cite this article: 

Li Yuan(李渊), Qian Jian-Qiang(钱建强), and Li Ying-Zi(李英姿) Theory of higher harmonics imaging in tapping-mode atomic force microscopy 2010 Chin. Phys. B 19 050701

[1] Binnig G, Quate C F and Gerber C 1986 Phys. Rev. Lett. 56 930
[2] Garc\'{\hia R and Perez R 2002 Surf. Sci. Rep. 47 197
[3] Ou G P, Song Z, Wu Y Y, Chen X Q and Zhang F J 2006 Chin. Phys. 15 1296
[4] Zhong Q, Inniss D, Kjoller K and Elings V B 1993 Surf. Sci. 290 L688
[5] Han G Q, Zeng Y G, Yu J Z and Cheng B W 2008 Chin. Phys. Lett. 25 242
[6] Anselmetti D, Luthi R, Meyer E, Richmond T, Dreier M, Frommer J E and Guntherodt H J 2004 Nanotechnology 5 87
[7] Bustamante C and Keller D 1995 Phys. Today 48 33.
[8] Bar G, Thomann Y and Whangbo M H 1998 Langmuir 14 1219
[9] Noy A, Sanders C H, Vezenov D V, Wong S S and Lieber C M 1998 Langmuir 14 1508
[10] Marcus M S, Carpick R W, Sasaki D and Eriksson M A 2002 Phys. Rev. Lett. 88 226103
[11] Cleveland J P, Anczykowski B, Schmid A E and Elings V B 1998 Appl. Phys. Lett. 72 2613
[12] Tamayo J and Garc\'{\hia R 1997 Appl. Phys. Lett. 71 2394
[13] Tamayo J and Garc\'{\hia R 1998 Appl. Phys. Lett. 73 2926
[14] Behren O P, Odoni L, Loubet J L and Burnham N A 1999 Appl. Phys. Lett. 75 2551
[15] Patil S, Martinez N F, Lozano J R and Garc\'{\hia R 2007 J. Mol. Recognit. 20 516
[16] Martinez N F, Lozano J R, Herruzo R T, Garc\'{\hia F, Richter C, Sulzbach T and Garc\'{\hia R 2008 Nanotechnology 19 384011
[17] Rodriguez T R and Garc\'{\hia R 2004 Appl. Phys. Lett. 84 449
[18] Proksch R 2006 Appl. Phys. Lett. 89 113121
[19] Martinez N F, Patil S, Lozano J R and Garc\'{\hia R 2006 Appl. Phys. Lett. 89 153115
[20] Platz D, Tholen E A, Pensen D and Haviland D B 2008 Appl. Phys. Lett. 92 153106
[21] Stark R W, Naujoks N and Stemmer A 2007 Nanotechnology 18 065502
[22] Stark M, Stark R W, Heckl W M and Guckenberger R 2002 Proc. Natl. Acad. Sci. USA 99 8473
[23] Stark R W and Heckl W M 2003 Rev. Sci. Instrum. 74 5111
[24] Stark R W and Heckl W M 2000 Surf. Sci. 457 219
[25] Legleiter J, Park M, Cusik B and Kowalewski T 2006 Proc. Natl. Acad. Sci. USA 103 4813
[26] Rabe U, Janser K and Arnold W 1996 Rev. Sci. Instrum. 67 3281
[27] Cappella B and Dietler G 1999 Surf. Sci. Rep. 34 1
[28] Fan K Q, Jia J Y, Liu X Y and Zhu Y M 2007 Acta Phys. Sin. 56 6345 (in Chinese)
[29] Derjauin B V, M\"uller V M and Toporov Y P 1975 J. Colloid Interface Sci. 53 314
[30] Garc\'{\hia R, Gomez C J, Martinez N F, Patil S, Dietz C and Magerle R 2006 Phys. Rev. Lett. 97 016103
[31] Bausch A R, Ziemann F, Boulbitch A A, Jacobson K and Sackmann E 1998 Biophys. J. 75 2038
[32] Tamayo J and Garc\'{\hia R 1996 Langmuir 12 4430
[1] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[2] Micro-track structure analysis for 100 MeV Si ions in CR-39 by using atomic force microscopy
Fang Mei-Hua (方美华), Wei Zhi-Yong (魏志勇), Zhang Zi-Xia (张紫霞), Zhu Li (朱立), Fu Yu (府宇), Shi Miao (石苗), Li Guang-Wu (黎光武), Guo Gang (郭刚). Chin. Phys. B, 2013, 22(11): 116105.
[3] Characteristics and properties of metal aluminum thin film prepared by electron cyclotron resonance plasma-assisted atomic layer deposition technology
Xiong Yu-Qing(熊玉卿), Li Xing-Cun(李兴存), Chen Qiang(陈强), Lei Wen-Wen(雷雯雯), Zhao Qiao(赵桥), Sang Li-Jun(桑利军), Liu Zhong-Wei(刘忠伟), Wang Zheng-Duo(王正铎), and Yang Li-Zhen(杨丽珍) . Chin. Phys. B, 2012, 21(7): 078105.
[4] Adhesive contact: from atomistic model to continuum model
Fan Kang-Qi(樊康旗),Jia Jian-Yuan(贾建援), Zhu Ying-Min(朱应敏), and Zhang Xiu-Yan(张秀艳) . Chin. Phys. B, 2011, 20(4): 043401.
No Suggested Reading articles found!