Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 020201    DOI: 10.1088/1674-1056/19/2/020201
GENERAL   Next  

Three types of generalized Kadomtsev-Petviashvili equations arising from baroclinic potential vorticity equation

Zhang Huan-Ping(张焕萍)a), Li Biao(李彪)a)d), Chen Yong (陈勇)a)b), and Huang Fei(黄菲)c)
a Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo 315211, China; b Institute of Theoretical Computing, East China Normal University, Shanghai 200062, China; c Department of Marine Meteorology, Ocean University of China, Qingdao 266003, China; d Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, Beijing 100190, China
Abstract  By means of the reductive perturbation method, three types of generalized (2+1)-dimensional Kadomtsev--Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.
Keywords:  baroclinic potential vorticity equation      generalized Kadomtsev--Petviashvili equation      symmetry groups      approximate solution  
Received:  24 March 2009      Revised:  24 July 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  02.20.-a (Group theory)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 10735030 and 40775042), Ningbo Natural Science Foundation (Grant No. 2008A610017), National Basic Research Program of China (973 Program) (Grant Nos. 2005CB422301 and 2007CB814800) and K.C. Wong Magna Fund in Ningbo University.

Cite this article: 

Zhang Huan-Ping(张焕萍), Li Biao(李彪), Chen Yong (陈勇), and Huang Fei(黄菲) Three types of generalized Kadomtsev-Petviashvili equations arising from baroclinic potential vorticity equation 2010 Chin. Phys. B 19 020201

[1] Chen Y and Fan E 2007 Chin. Phys. 16 6
[2] Zhang S L, Lou S Y and Qu C Z 2006 Chin. Phys. 15 2765
[3] Yang P, Chen Y and Li Z B 2008 Chin. Phys. B 17 3953
[4] Wang J and Li B 2009 Chin. Phys. B 18 2109
[5] Li J H and Lou S Y 2008 Chin. Phys. B 17 747
[6] Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 1821
[7] Qian S P and Tian L X 2007 Chin. Phys. 16 303
[8] Zha Q L and Li Z B 2008 Chin. Phys. B 17 2333
[9] Zhang S Q, Xu G Q and Li Z B 2002 Chin. Phys. 11 933
[10] Xia T C, Zhang H Q and Yan Z Y 2001 Chin. Phys. 10 694
[11] Pedlosky J 1979 Geophysical Fluid Dynamics (New York:Springer)
[12] Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys.A: Math. Gen. 39 513
[13] Tang X Y, Huang F and Lou S Y 2006 Chin. Phys. Lett. 24 887
[14] Gao Y and Tang X Y 2007 Commun. Theor. Phys.(Beijing, China) 48 961
[15] Li B, Chen Y and Zhang H Q 2005 Acta Mech. 174 77
[16] Tang X Y and Lou S Y 2002 Chin. Phys. Lett. 19 1
[17] Abdul-Majid Wazwaz 2008 Appl. Math. Comput. 204 227
[19] Lou S Y and Ma H C 2005 J. Phys. A 38 L129
[20] Lou S Y and Ma H C 2006 Chaos, Solitons and Fractals 30 804
[21] Lou S Y, Jia M, Tang X Y and Huang F 2007 Phys. Rev. E 75056318
[22] Lou S Y and Tang X Y 2004 J. Math. Phys. 45 1020
[23] Hereman W and Zhuang W 1995 Acta Appl. Math. 39 361
[1] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[2] Dynamic characteristics of resonant gyroscopes study based on the Mathieu equation approximate solution
Fan Shang-Chun(樊尚春), Li Yan(李艳), Guo Zhan-She(郭占社), Li Jing(李晶), and Zhuang Hai-Han(庄海涵) . Chin. Phys. B, 2012, 21(5): 050401.
[3] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[4] Approximate solutions of nonlinear PDEs by the invariant expansion
Wu Jiang-Long (吴江龙), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2012, 21(12): 120204.
[5] Asymptotic solution for the Eiño time delay sea–air oscillator model
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2011, 20(7): 070205.
[6] Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation
Hu Xiao-Rui(胡晓瑞), Chen Yong(陈勇), and Huang Fei(黄菲). Chin. Phys. B, 2010, 19(8): 080203.
[7] Homotopic mapping solving method of the reduces equation for Kelvin waves
Mo Jia-Qi(莫嘉琪), Lin Yi-Hua(林一骅), and Lin Wan-Tao(林万涛). Chin. Phys. B, 2010, 19(3): 030202.
[8] Approximate solution for the Klein-Gordon-Schr?dinger equation by the homotopy analysis method
Wang Jia(王佳), Li Biao(李彪), and Ye Wang-Chuan(叶望川). Chin. Phys. B, 2010, 19(3): 030401.
[9] A new method to obtain approximate symmetry of nonlinear evolution equation from perturbations
Zhang Zhi-Yong(张智勇), Yong Xue-Lin(雍雪林), and Chen Yu-Fu(陈玉福). Chin. Phys. B, 2009, 18(7): 2629-2633.
[10] Symmetry and general symmetry groups of the coupled Kadomtsev--Petviashvili equation
Wang Jia(王佳) and Li Biao(李彪). Chin. Phys. B, 2009, 18(6): 2109-2114.
[11] Study on an extended Boussinesq equation
Chen Chun-Li(陈春丽), Zhang Jin E(张近), and Li Yi-Shen(李翊神). Chin. Phys. B, 2007, 16(8): 2167-2179.
[12] The sea--air oscillator model of decadal variations in subtropical cells and equatorial Pacific SST
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2007, 16(7): 1908-1911.
[13] Variational iteration method for solving perturbed mechanism of western boundary undercurrents in the Pacific
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Wang Hui(王辉) . Chin. Phys. B, 2007, 16(4): 951-954.
No Suggested Reading articles found!