Please wait a minute...
Chinese Physics, 2007, Vol. 16(3): 635-639    DOI: 10.1088/1009-1963/16/3/013
GENERAL Prev   Next  

Remarks on interpretations of the Eötvös experiment and misinterpretation of E=mc2

C. Y. Lo (Lu Zhong-Xian)(鲁重贤)
Applied and Pure Research Institute, 17 Newcastle Drive,Nashua, NH 03060, USA
Abstract  The Eötvös experiment on the verification of equivalence between inertial mass and gravitational mass of a body is famous for its accuracy. A question is, however, can these experimental results be applied to the case of a physical space in general relativity, where the space coordinates could be arbitrary? It is pointed out that it can be validly applied because it has been proven that Einstein's equivalence principle for a physical space must have a frame of reference with the Euclidean-like structure. Will claimed further that such an overall accuracy can be translated into an accuracy of the equivalence between inertial mass and each type of energy. It is shown that, according to general relativity, such a claim is incorrect. The root of this problem is due to an inadequate understanding of special relativity that produced the famous equation $E=mc^2$, which must be understood in terms of energy conservation. Concurrently, it is pointed out that this error is a problem in Will's book, `Theory and Experiment in Gravitational Physics'.
Keywords:  Einstein's equivalence principle      Einstein--Minkowski condition      Euclidean-like structure      Eötvös experiment      weak equivalence principle      $E=mc^2$  
Received:  13 July 2006      Revised:  01 August 2006      Accepted manuscript online: 
PACS:  04.20.-q (Classical general relativity)  
  03.30.+p (Special relativity)  

Cite this article: 

C. Y. Lo (Lu Zhong-Xian)(鲁重贤) Remarks on interpretations of the Eötvös experiment and misinterpretation of E=mc2 2007 Chinese Physics 16 635

[1] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[2] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
[3] Correlation method estimation of the modulation signal in the weak equivalence principle test
Jie Luo(罗杰), Liang-Cheng Shen(沈良程), Cheng-Gang Shao(邵成刚), Qi Liu(刘祺), Hui-Jie Zhang(张惠捷). Chin. Phys. B, 2018, 27(8): 080402.
[4] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[5] Effect of gravity gradient in weak equivalence principle test
Jia-Hao Xu(徐家豪), Cheng-Gang Shao(邵成刚), Jie Luo(罗杰), Qi Liu(刘祺), Lin Zhu(邾琳), Hui-Hui Zhao(赵慧慧). Chin. Phys. B, 2017, 26(8): 080401.
[6] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[7] The bending of light ray and unphysical solutions in general relativity
C. Y. Lo (鲁重贤). Chin. Phys. B, 2004, 13(2): 159-167.
No Suggested Reading articles found!