Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 030203    DOI: 10.1088/1674-1056/24/3/030203
GENERAL Prev   Next  

Controllability of fractional-order Chua's circuit

Zhang Hao (张浩), Chen Di-Yi (陈帝伊), Zhou Kun (周坤), Wang Yi-Chen (王一琛)
Department of Electrical Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
Abstract  The ultimate proof of our understanding of nature and engineering systems is reflected in our ability to control them. Since fractional calculus is more universal, we bring attention to the controllability of fractional order systems. First, we extend the conventional controllability theorem to the fractional domain. Strictly mathematical analysis and proof are presented. Because Chua's circuit is a typical representative of nonlinear circuits, we study the controllability of the fractional order Chua's circuit in detail using the presented theorem. Numerical simulations and theoretical analysis are both presented, which are in agreement with each other.
Keywords:  controllability      Chua's circuit      fractional order circuit  
Received:  03 July 2014      Revised:  11 October 2014      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51109180 and 51479173), the Fundamental Research Funds for the Central Universities, China (Grant No. 201304030577), the Northwest A&F University Foundation, China (Grant No. 2013BSJJ095), and the Scientific Research Foundation on Water Engineering of Shaanxi Province, China (Grant No. 2013slkj-12).
Corresponding Authors:  Chen Di-Yi     E-mail:  diyichen@nwsuaf.edu.cn

Cite this article: 

Zhang Hao (张浩), Chen Di-Yi (陈帝伊), Zhou Kun (周坤), Wang Yi-Chen (王一琛) Controllability of fractional-order Chua's circuit 2015 Chin. Phys. B 24 030203

[1] Nabi-Abdolyousefi M and Mesbahi M 2013 IEEE T. Automat. Contr. 58 3179
[2] Liu X M, Lin H and Chen B M 2013 Automatica 49 3531
[3] Miao Q Y, Tang Y, Kurths J, Fang J A and Wong W K 2013 Chaos 23 033114
[4] Hu Y A and Li H Y 2011 Chin. Phys. Lett. 28 120508
[5] Guo X Y and Li J M 2011 Chin. Phys. Lett. 28 120503
[6] Cao W and Sun M 2014 Acta Phys. Sin. 63 020201 (in Chinese)
[7] Song X N and Liu L P 2013 Acta Phys. Sin. 62 218703 (in Chinese)
[8] Liu X, Gao Q and Li X L 2014 Chin. Phys. B 23 010202
[9] Liu Y Y, Slotine J J and Barabasi A L 2011 Nature 473 167
[10] Zhou J C, Son H, Kim N and Song H J 2013 Chin. Phys. B 22 120506
[11] Huang D, Wu J J and Tang Y H 2014 Chin. Phys. B 23 038404
[12] Li R H and Chen W S 2013 Chin. Phys. B 22 040503
[13] Wang D F, Zhang J Y and Wang X Y 2013 Chin. Phys. B 22 100504
[14] Chen W, Zhang J J and Zhang J Y 2013 Fraction. Calcul. Appl. Analys. 16 76
[15] Li C P, Chen Y Q and Kurths J 2013 Philosoph. Trans. Roy. Societ. A 371 20130037
[16] Ge H X and Cheng R J 2014 Chin. Phys. B 23 040203
[17] Wang F Q and Ma X K 2013 J. Power Electr. 13 1008
[18] Han Q, Liu C X, Sun L and Zhu D R 2013 Chin. Phys. B 22 020502
[19] Cao H F, Zhang R X and Yan F L 2013 Commun. Nonlin. Sci. Numer. Simulat. 18 341
[20] Liu Z H and Li X W 2014 J. Optimazat. Theor. Appl. 156 167
[21] Zhou X F, Wei J and Hu LG 2014 Appl. Mathemat. Lett. 26 418
[22] Liu X H, Liu Z H and Bin M J 2014 J. Computat. Analys. Appl. 17 468
[23] Li C L and Yu S M 2013 Chaos 23 1350170
[24] Li Q D, Zeng H Z and Yang X S 2014 Nonlinear Dyn. 77 255
[25] Ma M L, Min F H, Shao S Y and Huang M Y 2014 Acta Phys. Sin. 63 010507 (in Chinese)
[26] Li C L and Yu S M 2013 Int. J. Bifurcat. Chaos 23 1350170
[27] Zhang Y F and Zhang X 2013 Int. J. Bifurcat. Chaos 23 1350136
[28] Petras I 2008 Chaos Soliton. Fract. 38 140
[29] EI Gammoudi I and Feki M 2013 Commun. Nonlinear Sci. Numer. Simul. 18 625
[30] Shao S Y, Min F H, Ma M L and Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese)
[31] Radwan A G, Moaddy K and Hashim I 2013 Abstract Appl. Anal. 758676
[32] Cafagna D and Grassi G 2008 Int. J. Bifurcation Chaos 18 615
[33] Wang C H, Xu H and Yu F 2013 Int. J. Bifurcat. Chaos 23 1350022
[34] Westerlund S and Ekstam L 1994 IEEE T. Dielectr. Electr. Insulat. 1 826
[35] Guo T L 2012 Comput. Math. Appl. 64 3171
[36] Guermah S, Djennoune S and Bettayed M 2008 Int. J. Appl. Math. Comput. Sci. 18 213
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Effect of degree correlation on edge controllability of real networks
Shu-Lin Liu(刘树林) and Shao-Peng Pang(庞少鹏)†. Chin. Phys. B, 2020, 29(10): 100202.
[3] Controllability of heterogeneous interdependent group systems under undirected and directed topology
Hui-Qin Pei(裴惠琴), Shi-Ming Chen(陈世明). Chin. Phys. B, 2018, 27(10): 108901.
[4] Optimization of robustness of network controllability against malicious attacks
Xiao Yan-Dong (肖延东), Lao Song-Yang (老松杨), Hou Lv-Lin (侯绿林), Bai Liang (白亮). Chin. Phys. B, 2014, 23(11): 118902.
[5] Enhancing the capability of controlling quantum systems via ancillary systems
Zhang Ming(张明), Gao Da-Yuan(高大远), Dai Hong-Yi(戴宏毅), Xie Hong-Wei(谢红卫), and Hu De-Wen(胡德文). Chin. Phys. B, 2007, 16(4): 901-905.
[6] Perfect synchronization of chaotic systems: A controllability perspective
Sun Ming-Xuan(孙明轩), He Xiong-Xiong(何熊熊), and Yu Li(俞立). Chin. Phys. B, 2006, 15(12): 2883-2889.
No Suggested Reading articles found!