Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 045203    DOI: 10.1088/1674-1056/ac3395
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment

Yu-Chuan Luo(罗玉川)1, Rong Yan(鄢容)2, Guo Pu(蒲国)1, Hong-Bin Wang(王宏彬)1, Zhi-Jun Wang(王志君)3, Chi Yang(杨驰)3, Li Yang(杨黎)1, Heng-Xin Guo(郭恒鑫)1, Zhi-Bing Zhou(周志兵)1, Bo Chen(陈波)1, Jian-Jun Chen(陈建军)1, Fu-Jun Gou(芶富均)1, Zong-Biao Ye(叶宗标)1,†, and Kun Zhang(张坤)1,‡
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
3 Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
Abstract  Steady high-flux helium (He) plasma with energy ranging from 50 eV to 90 eV is used to fabricate a fiber-form nanostructure called fuzz on a polycrystalline molybdenum (Mo) surface. Enhanced hydrogen (H) pulsed plasma in a wide power density range of 12 MW/m2-35 MW/m2 is subsequently used to bombard the fuzzy Mo, thereby simulating the damage of edge localized mode (ELM) to fuzz. The comparisons of surface morphologies, crystalline structures, and optical reflectivity between the original Mo and the Mo treated with various He+ energy and transient power densities are performed. With the increase of He ion energy, the Mo nano-fuzz evolved density is enlarged due to the decrease of filament diameter and optical reflectivity. The fuzz-enhanced He release should be the consequence of crystalline growth and the lattice shrinkage inside the Mo-irradiated layers (~200 nm). The fuzz induced by lower energy experiences more severe melting damage and dust release under the condition of the identical transient H plasma-bombardment. The H and He are less likely to be trapped due to aggravated melting evidenced by the enhanced crystalline size and distinct lattice shrinkage. As the transient power density rises, the thermal effect is enhanced, thereby causing the fuzz melting loss to aggravate and finally to completely disappear when the power density exceeds 21 MW/m2. Irreversible grain expansion results in huge tensile stress, leading to the observable brittle cracking. The effects of transient thermal load and He ion energy play a crucial role in etching Mo fuzz during ELM transient events.
Keywords:  molybdenum nanostructured fuzz      pulsed-H plasma      edge localized mode      etching process  
Received:  19 August 2021      Revised:  19 October 2021      Accepted manuscript online:  27 October 2021
PACS:  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.55.Pi (Fusion products effects (e.g., alpha-particles, etc.), fast particle effects)  
  52.55.Rk (Power exhaust; divertors)  
Fund: Project supported by the Sichuan Provincial Science and Technology Program, China (Grant Nos. 2021YFSY0015 and 2021YJ0510), the China Postdoctoral Science Foundation (Grant No. 2019M663487), and the National Natural Science Foundation of China (Grant No. 11905151).
Corresponding Authors:  Zong-Biao Ye, Kun Zhang     E-mail:  zbye@scu.edu.cn;kzhang@scu.edu.cn

Cite this article: 

Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤) Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment 2022 Chin. Phys. B 31 045203

[1] Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N and Asdex Upgrade Team 2004 J. Nucl. Mater. 329-333 66
[2] Brooks J N, El-Guebaly L, Hassanein A and Sizyuk T 2015 Nucl. Fusion 55 043002
[3] Eren B, Marot L, Ryzhkov I V, Lindig S, Houben A, Wisse M, Skoryk O O, Oberkofler M, Voitsenya V S, Linsmeier C and Meyer E 2013 Nucl. Fusion 53 113013
[4] Sharpe J P, Kolasinski R D, Shimada M, Calderoni P and Causey R A 2009 J. Nucl. Mater. 390-391 709
[5] Wisse M, Eren B, Marot L, Steiner R and Meyer E 2012 Rev. Sci. Instrum. 83 013509
[6] Temmerman G D, Bystrov K, Zielinski J J, Balden M, Arnas C and Marot L 2012 J. Vac. Sci. Technol. A 30 041306
[7] Tanyeli R, Marot L, D Mathys, van de Sanden M and Temmerman G D 2015 Sci. Rep. 5 9779
[8] Fiflis P, Connolly N and Ruzic D N 2016 J. Nucl. Mater. 482 201
[9] Kajita S, Tokitani M, Saeki T, Ohno N and Yoshida N 2013 J. Nucl. Mater. 442 S515
[10] Yang Q, You Y W, Liu L, Ni W, Liu D, Liu C S, Benstetter G and Wang Y 2015 Sci. Rep. 5 10959
[11] Sakamoto M, Miyazaki T, Higashizono Y, Ogawa K, Ozaki K, Ashikawa N, Tokitani M, Shoji T, Masuzaki S, Tokunaga K, Ohya K, Sagara A, Yoshida N and Sato K N 2009 Phys. Scr. 138 014043
[12] Wright G M, Brunner D F, Baldwin M J, Doerner R P, Labombard B, Lipschultz B, Terry J L and Whyte D G 2012 Nucl. Fusion 52 042003
[13] Wright G M, Brunner D, Baldwin M J, Bystrov K, Doerner R P, Labombard B, Lipschultz B, De Temmerman G, Terry J L, Whyte D G and Woller K B 2013 J. Nucl. Mater. 438 S84
[14] Baldwin M J and Doerner R P 2010 J. Nucl. Mater. 404 165
[15] Sefta F, Juslin N and Wirth B D 2013 J. Appl. Phys. 114 243518
[16] Kajita S, Yoshida N, Yoshihara R, Ohno N and Yamagiwa M 2011 J. Nucl. Mater. 418 152
[17] Valles G, Martin-Bragado I, Nordlund K, Lasa A, Björkas C, Safi E, Perladom J M and Rivera A 2017 J. Nucl. Mater. 490 108
[18] Takamura S 2014 Plasma Fusion Res. 9 1405131
[19] Zohm H 1996 Plasma Phys. Control. Fusion 38 105
[20] Voitsenya V S, Bardamid A F, Bondarenko V N, Jacob W and Vinnichenko M V 2001 J. Nucl. Mater. 290 336
[21] Nishijima D, Kikuchi Y, Nakatsuka M, Baldwin M J, Doernei R P, Nagata M and Ueda Y 2011 Fusion Sci. Technol. 60 1447
[22] Morgan T W, Zielinski J, Hensen B J, Xu H Y, Marot L and De Temmerman G 2013 J. Nucl. Mater. 438 S784
[23] Kajita S, Ohno N, Sakaguchi W and Takagi M 2009 Plasma Fusion Res. 4 004
[24] Brooks J N, Allain J P, Doerner R P, Hassanein A, Nygren R, Rognlien T D and Whyte D G 2009 Nucl. Fusion 49 035007
[25] Sinclair G, Tripathi J K, Diwakar P K and Hassanein A 2016 Nucl. Fusion 56 036005
[26] Ye Z B, Ma X C, He P N, Wang Z J, Yang C, Chen B, Chen J, Wei J, Zhang K and Gou F J 2020 Tungsten 2 94
[27] Zheng X J, Gou F J, Zhang Y P, Wang H X, Wallace A C, Wang H B, Huang Z H, Ji X Q, Ye Z B, Liang S Y, Zhang J Z, Wu N, Feng Y T and Deng B Q 2021 Plasma Phys. Control. Fusion 63 035019
[28] Karl D Hammond 2017 Mater. Res. Express 4 104002
[29] Cipiti B B and Kulcinski G L 2005 J. Nucl. Mater. 347 298
[30] Zhou H B, Li Y H and Lu G H 2015 Comput. Mater. Sci. 112 487
[31] Patino M I, Nishijima D, Tokitani M, Nagata D and Doerner R P 2021 Nucl. Fusion 61 076001
[32] Tripathi J K, Novakowski T J, Joseph G, Linke J and Hassanein A 2015 J. Nucl. Mater. 464 97
[33] Schwarz S M, Kempshall B W and Giannuzzi L A 2003 Acta Mater. 51 2765
[34] Coates R 1988 IEEE Transactions on. 35 522
[35] Tripathi J K, Novakowski T J and Hassanein A 2015 Appl. Surf. Sci. 353 1070
[36] Suryanarayana C and Norton M G 1998 Microsc. Microanal. 4 513
[37] Zhou H B, Liu Y L, Zhang Y, Jin S and Lu G H 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 3189
[38] El-Atwani O, HattarK, HinksJA, Greaves G, Harilal S S and HassaneinA 2015 J. Nucl. Mater. 458 216
[39] Lejcek P and Hofmann S 1995 Crit. Rev. Solid State Mater. Sci. 20 1
[40] Tokunaga K, Fujiwara T, Ezato K, Suzuki S, Akiba M and Yoshida N 2007 J. Nucl. Mater. 367 812
[41] Becquart C S and Domain C 2009 J. Nucl. Mater. 386-388 109
[42] Zhou H B, Momanyi N K, Li Y H, Jiang W and Li X C 2016 RSC Adv. 6 103622
[43] Lee S C, Choi J H and Lee J G 2009 J. Nucl. Mater. 383 244
[44] Zou H, Zhang L, Guan T, Zhang X N, Remnev G E, Pavlov S K, Wang Y N and Mei X 2020 Surf. Coat. Technol. 384 125333
[45] Sinclair G, Tripathi J K, Diwakar P K and Hassanein A 2017 Sci. Rep. 7 12273
[1] Estimation of tungsten production from the upper divertor in EAST during edge localized modes
Jing Ou(欧靖), Nong Xiang(项农), Zong-Zheng Men(门宗政), Ling Zhang(张凌), Ji-Chan Xu(许吉禅), Wei Gao(高伟). Chin. Phys. B, 2019, 28(12): 125201.
[2] Observation of chaotic ELMs in HL-2A tokamak
Huang Yuan(黄渊), Nie Lin(聂林), Yu De-Liang(余德良), Liu Chun-Hua(刘春华), Feng Zhen(冯震), and Duan Xu-Ru(段旭如). Chin. Phys. B, 2011, 20(5): 055201.
[3] Investigation of lower hybrid current drive during H-mode in EAST tokamak
Li Miao-Hui(李妙辉), Ding Bo-Jiang(丁伯江), Kong Er-Hua(孔二华), Zhang Lei(张磊), Zhang Xin-Jun(张新军), Qian Jin-Ping(钱金平), Yan Ning(颜宁), Han Xiao-Feng(韩效锋), Shan Jia-Fang(单家方), Liu Fu-Kun(刘甫坤), Wang Mao(王茂), Xu Han-Dong(徐旵东), and Wan Bao-Nian(万宝年) . Chin. Phys. B, 2011, 20(12): 125202.
[4] Properties of plasma radiation during discharges with improved confinement on HL-2A Tokamak
Gao Jin-Ming(高金明), Liu Yi(刘仪), Li Wei(李伟), Cui Zheng-Ying(崔正英), Zhou Yan(周艳), Huang Yuan(黄渊), and Ji Xiao-Quan(季小全). Chin. Phys. B, 2010, 19(11): 115201.
No Suggested Reading articles found!