Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106104    DOI: 10.1088/1674-1056/ac29a7
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Hydrogen isotopic replacement and microstructure evolution in zirconium deuteride implanted by 150 keV protons

Man Zhao(赵嫚)1, Mingxu Zhang(张明旭)1, Tao Wang(王韬)2,†, Jiangtao Zhao(赵江涛)1, Pan Dong(董攀)2, Zhen Yang(杨振)3, and Tieshan Wang(王铁山)1,‡
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 Institute of Fluid Physics, CAEP, Mianyang 621900, China;
3 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
Abstract  Zirconium tritiated (ZrTx) is an alternative target material for deuteron-triton (D-T) reaction neutron generator. The isotopic replacement and microstructure evolution induced by hydrogen isotope implantation could significantly affect the performance of the target film. In this work, the zirconium deuteride film deposited on Mo/Si substrate was implanted by 150 keV protons with fluence from 1×1016 to 1×1018 protons/cm2. After implantation, the depth profiles of retained hydrogen (H) and deuterium (D) in these target films were analyzed by elastic recoil detection analysis (ERDA), and time of flight-secondary ion mass spectrometry (ToF-SIMS). Additionally, the microstructure evolution was also observed by x-ray diffraction (XRD) and scanning electron microscope (SEM). The D concentration in the ZrDx film decreased versus the proton implantation fluence. An analytical model was proposed to describe the hydrogen isotopic trapping and exchange as functions of incident protons fluence. Additionally, the XRD analysis revealed that no new phase was formed after proton implantation. Furthermore, circular flakings were observed on the ZrDx surface from SEM images at fluence up to 1×1018 protons/cm2, and this surface morphology was considered to associate with the hydrogen atoms congregation in Mo/Si boundary.
Keywords:  zirconium deuterides      isotopic replacement      proton implantation      microstructure evolution  
Received:  15 June 2021      Revised:  15 September 2021      Accepted manuscript online:  24 September 2021
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905206 and 11975217).
Corresponding Authors:  Tao Wang, Tieshan Wang     E-mail:  wangtaoxtc@gmail.com;tswang@lzu.edu.cn

Cite this article: 

Man Zhao(赵嫚), Mingxu Zhang(张明旭), Tao Wang(王韬), Jiangtao Zhao(赵江涛), Pan Dong(董攀), Zhen Yang(杨振), and Tieshan Wang(王铁山) Hydrogen isotopic replacement and microstructure evolution in zirconium deuteride implanted by 150 keV protons 2021 Chin. Phys. B 30 106104

[1] Klix A, Eichin R, Forrest R A, et al. 2007 Fusion Eng. Des. 82 2558
[2] Ohnishi S, Kondo K, Azuma T, Sato S, Ochiai K, Takakura K, Murata I and Konno C 2012 Fusion Eng. Des. 87 695
[3] Jakhar S, Abhangi M, Rao C V S, Basu T K, Bhade S P D and Reddy P J 2012 Fusion Eng. Des. 87 184
[4] Monnin C, Bach P, Tulle P A, van Rompay M and Ballanger A 2002 Nucl. Instrum. Meth A. 480 214
[5] Ludewigt B A, Wells R P and Reijonen J 2007 Nucl. Instrum. Meth B. 261 830
[6] Terrani K A, Balooch M, Wongsawaeng D, Jaiyen S and Olander D R 2010 J. Nucl. Mater. 397 61
[7] Wipf H, Kappesser B and Werner R 2000 J. Alloys Compd. 310 190
[8] Uno M, Yamada K, Maruyama T, Muta H and Yamanaka S 2004 J. Alloys Compd. 366 101
[9] Long X, Huang G, Peng S, Liang J and Yang B 2011 Nucl. Sci & Eng. 60 1568
[10] Čufar A, Batistoni P, Ghani Z, Giacomelli L, Lengar I, Loreti S, Milocco A, Popovichev S, Pillon M, Rigamonti D, Rebai M, Tardocchi M and Snoj L 2018 Fusion Eng. Des. 136 1089
[11] Hughey B J 1995 Nucl. Instrum. Meth B 95 393
[12] Alimov V K, Roth J and Lindig S 2008 J. Nucl. Mater. 381 267
[13] Tang X H, Shi L Q, O'Connor D J and King B 2014 J. Nucl. Mater. 446 200
[14] Monnin C, Ballanger A, Sciora E, Steinbrunn A, Alexandre P and Pelcot G 2000 Nucl. Instrum. Meth A 453 493
[15] Anzorena M S, Bertolo A A, Gagetti L, Gaviola P A, Del Grosso M F and Kreiner A J 2018 Appl. Surf. Sci. 433 68
[16] Doyle B L, Wampler W R, Brice D K and Picraux S T 1980 J. Nucl. Mater. 93 551
[17] Doyle B L, Brice D K and Wampler W R 1981 Radiat. Eff. Defect. S 57 81
[18] Blewer R S, Behrisch R, Scherzer B M U and Schulz R 1978 J. Nucl. Mater. 76 305
[19] Karamanis D 2002 Nucl. Instrum. Meth B 195 350
[20] Fournier L, Serres A, Auzoux Q, Leboulch D and Was G S 2009 J. Nucl. Mater. 384 38
[21] Wang B Y, Xiang W, Dai J Y, Tan X H, Cheng L, Chen L and Qin X B 2011 Acta Phys. Sin. 60 042902 (in Chinese)
[22] Liu Y, Xiang W, Zhang G and Wang B 2013 Appl. Surf. Sci. 285 557
[23] Astrelin V T, Burdakov A V, Bykov P V, Ivanov I A, Ivanov A A, Jongen Y, Konstantinov S G, Kudryavtsev A M, Kuklin K N and Mekler K I 2010 J. Nucl. Mater. 396 43
[24] Suarez Anzorena M, Bertolo A A, Gagetti L, Gaviola P A, del Grosso M F and Kreiner A J 2018 Appl. Surf. Sci. 443 68
[25] Mayer M 1999 AIP Conference Proceedings 475 541
[26] Mändl S, Bohne Y, Gerlach J W, Assmann W and Rauschenbach B 2006 Nucl. Instrum. Meth B 249 297
[27] Ryabtsev S, Gasparyan Y, Zibrov M, Shubina A and Pisarev A 2016 Nucl. Instrum. Meth B 382 101
[28] Waisman J L, Sines G and Robinson L B 1973 Metal. Mater. Trans. B 4 291
[29] Hai L, Zhang H, Dong S, Xiao J and Zhang Z 2013 ASSP 32 417
[30] Wang T, Long J, Wang S, Yang Z, Li J, Huang G, Zhang L, Jian Yang A and Renshaw Wang X 2017 Sci. Rep. 7 13304
[31] Liang J, Peng S, Long X, Zhang X and Zhang T 2003 Journal of Isotopes 16 151
[32] Chen M, Peng S, Zhou X, Long X and Fu Y 2016 Chin. J. Rare Metals. 40 727
[33] Wang T S, Lv H Y, Grambole D, Yang Z, Peng H B and Han Y C 2009 J. Nucl. Mater. 386 214
[34] Oya Y, Suzuki H, Morita K, Iinuma K, Uchida S, Makide Y and Tanaka S 2002 Fusion Eng. Des. 61 705
[35] Kungumadevi L, Rajasekar K, Subbarayan A and Sathyamoorthy R 2008 Ionics 14 63
[36] Ahmed A, Afzal N, Devarajan M and Subramani S 2016 Materials Res. Express 3 116405
[37] Albrecht M, Christiansen S, Michler J, Dorsch W, Strunk H, Hansson P and Bauser E 1995 Appl. Phys. Lett. 67 1232
[38] Peng C S, Li Y K, Huang Q and Zhou J M 2001 J. Cryst. Growth. 227 740
[1] Microstructure evolution of Cu atomic islands on liquid surfaces in the ambient atmosphere
Zhang Xiao-Fei (张晓飞), Chen Hang (陈杭), Yu Sen-Jiang (余森江). Chin. Phys. B, 2015, 24(7): 076103.
[2] A simulation study of microstructure evolution during solidification process of liquid metal Ni
Liu Hai-Rong(刘海蓉), Liu Rang-Su(刘让苏), Zhang Ai-Long(张爱龙), Hou Zhao-Yang(侯兆阳), Wang Xin(王鑫), and Tian Ze-An(田泽安). Chin. Phys. B, 2007, 16(12): 3747-3753.
No Suggested Reading articles found!