Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084208    DOI: 10.1088/1674-1056/ab9442

Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating

Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉)
State Key Laboratory of High-Power Laser Diodes, Changchun University of Science and Technology, Changchun 130022, China
Abstract  We design an 850 nm tunable vertical-cavity surface-emitting laser (VCSEL) structure using an internal-cavity sub-wavelength grating. The use of such a tuning structure allows for wider wavelength tuning range and more stable single-polarization as compared to conventional tunable VCSELs. The features of the internal-cavity grating effect on the wavelength tuning and polarization characteristics of the tunable VCSEL are analyzed. The simulation results show that the largest wavelength tuning range achieves 44.2 nm, and the maximum orthogonal polarization suppression ratio (OPSR) is 33.4 dB (TE-type) and 38.7 dB (TM-type).
Keywords:  sub-wavelength grating      polarization mode      tunable VCSEL      wavelength tuning  
Received:  14 January 2020      Revised:  23 April 2020      Published:  05 August 2020
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the Jilin Science and Technology Development Plan, China (Grant Nos. 20180519018JH and 20190302052GX), Jilin Education Department "135" Science and Technology, China (Grant No. JJKH20190543KJ), the National Natural Science Foundation of China (Grant No. 11474038), and the Key Project of Equipment Pre-Research Fund of China (Grant No. 61404140103).
Corresponding Authors:  Yong-Gang Zou, Guo-Jun Liu, Xiao-Hui Ma     E-mail:;;

Cite this article: 

Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉) Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating 2020 Chin. Phys. B 29 084208

[1] Iga K 2008 Jpn. J. Appl. Phys. 47 1
[2] Xiang L, Zhang X, Zhang J W, Huang Y W, Ning Y Q and Wang L J 2018 Chin. Phys. B 27 074210
[3] Liu A, Wolf P, Lott J A and Bimberg D 2019 Photon. Res. 7 121
[4] Chen J J, Xia G Q and Wu Z M 2015 Chin. Phys. B 24 024210
[5] Xun M, Xu C, Xie Y Y, Deng J, Xu K, Jiang G Q, Pan G Z and Chen H D 2015 Chin. Phys. Lett. 32 104204
[6] Bakker M P, Barve A V, Zhan A, Coldren L A, Van Exter M P and Bouwmeester D 2014 Appl. Phys. Lett. 104 151109
[7] Frasunkiewicz L, Czyszanowski T, Thienpont H and Panajotov K 2018 Opt. Commun. 427 271
[8] Belmonte C, Frasunkiewicz L, Czyszanowski T, Thienpont H, Beeckman J, Neyts K and Panajotov K 2015 Opt. Expresee 23 15706
[9] Jatta S, Kögel B, Maute M, Zogal K, Riemenschneider F, Böhm G and Amann M C 2009 IEEE Photon. Technol. Lett. 21 1822
[10] Grundl T, Zogal K, Debernardi P, Muller M and Meissner P 2013 IEEE Photon. Technol. Lett. 25 841
[11] Qiao P, Cook K, Li K and Chang-Hasnain C J 1995 IEEE J. Sel. Top. Quantum Electron. 1 1
[12] Rao Y, Yang W, Chase C and Huang M C Y 2013 IEEE J. Sel. Top. Quantum Electron. 19 1701311
[13] Huang M C Y, Zhou Y and Chang-Hasnain C J 2008 Nat. Photon. 2 180
[14] Yang W, Zhu L, Rao Y, Chase C, Huang M and Chang-Hasnain C J 2013 IEEE Avionics, Fiber-Optics and Photonics Technology Conference (AVFOP), San Diego, CA, USA, October 1-3, 2013, pp. 86-87
[15] Chou S Y and Deng W 1995 Appl. Phys. Lett. 67 742
[16] Moore C P and Beard W L 2017 INT J. Nanotechnol 14 297
[17] Pang Z Y, Tong H, Wu X X, Zhu J K, Wang X X, Yang H and Qi Y P 2018 Opt. Quantum Electron. 50 335
[18] Kanamori Y, Roy E and Chen Y 2005 Microelectron. Eng. 78-79 287
[19] Carr D W, Sullivan J P and Friedmann T A 2003 Opt. Lett. 28 1636
[1] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[2] High-speed polarization mode dispersion compensation in a 43-Gb/s RZ-DQPSK transmission system over 1200 km of standard single-mode fibre
Tian Feng, Zhang Xiao-Guang, Weng Xuan, Xi Li-Xia, Zhang Yang-An, Zhang Wen-Bo. Chin. Phys. B, 2011, 20(8): 080702.
[3] Polarization mode dispersion compensation in a novel dual polarization differential quadrature phase shift keying system
Qin Jiang-Xing, Xi Li-Xia, Zhang Xiao-Guang, Tian Feng. Chin. Phys. B, 2011, 20(11): 114201.
[4] Propagation properties of an index guiding high birefringence fibre
Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, Jian Shui-Sheng. Chin. Phys. B, 2004, 13(9): 1493-1499.
[5] General demonstration of principal states of polarization and real-time monitoring of polarization mode dispersion in optical fibres
Dong Hui, Wu Chong-Qing, Fu Song-Nian. Chin. Phys. B, 2004, 13(8): 1291-1295.
[6] Calculation of geometrical birefringence from two-dimensional refractive-index profile in single-mode fibres
Dong Hui, Fu Song-Nian, Wu Chong-Qing. Chin. Phys. B, 2004, 13(12): 2082-2086.
[7] A modified split-step Fourier method for optical pulse propagation with polarization mode dispersion
Rao Min, Sun Xiao-Han, Zhang Ming-De. Chin. Phys. B, 2003, 12(5): 502-506.
[8] Study of the stability of polarization mode dispersion in fibre
Shum Ping, Fu Song-Nian, Dong Hui, Wu Chong-Qing, Liu Hai-Tao. Chin. Phys. B, 2003, 12(12): 1423-1428.
No Suggested Reading articles found!