Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060503    DOI: 10.1088/1674-1056/ab81f5
GENERAL Prev   Next  

Effect of transversal concentration gradient on H2-O2 cellular detonation

Cheng Wang(王成)1, Yi-Xuan Wu(吴易烜)1, Jin Huang(黄金)1, Wen-Hu Han(韩文虎)1, Qing-Guan Song(宋清官)2
1 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
2 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  

A two-dimensional detonation in H2-O2 system is simulated by a high-resolution code based on the fifth-order weighted essentially non-oscillatory (WENO) scheme in the spatial discretization and the 3th-order additive Runge-Kutta schemes in the time discretization, by using a detailed chemical model. The effect of a concentration gradient on cellular detonation is investigated. The results show that with the increase of the concentration gradient, the cell instability of detonation increases and gives rise to the oscillation of average detonation velocity. After a long time, for the case of the lower gradient the detonation can be sustained, with the multi-head mode and single-head mode alternating, while for the higher gradient it propagates with a single-head mode.

Keywords:  detonation      detailed reaction      WENO      additive Runge-Kutta (ARK)      concentration gradient  
Received:  18 November 2019      Revised:  09 March 2020      Accepted manuscript online: 
PACS:  05.70.-a (Thermodynamics)  
  45.20.dh (Energy conservation)  
  47.10.ad (Navier-Stokes equations)  
  47.40.Rs (Detonation waves)  
Fund: 

Project supported by the Natural National Science Foundation of China (Grant Nos. 11972090, 11732003, and U1830139), the Beijing Natural Science Foundation, China (Grant No. 8182050), and the National Key Research and Development Program of China (Grant No. 2017YFC0804700).

Corresponding Authors:  Jin Huang     E-mail:  huangjin@bit.edu.cn

Cite this article: 

Cheng Wang(王成), Yi-Xuan Wu(吴易烜), Jin Huang(黄金), Wen-Hu Han(韩文虎), Qing-Guan Song(宋清官) Effect of transversal concentration gradient on H2-O2 cellular detonation 2020 Chin. Phys. B 29 060503

[1] Liu J C, Liou J J, Sichel M, Kauffman C W and Nicholls J A 1988 21th Symposium (International) on Combustion, August 3-8, 1988, Technical University of Munich West Germany, Munich, Germany, pp. 1639-1647
[2] Short M and Sharpe G J 2003 Combust. Thoer. Model. 7 401
[3] Short M 2001 J. Fluid Mech. 430 381
[4] Ng H D, Radulescu M I, Higgins A J, Nikiforakis N and Lee J H S 2005 Combust. Theor. Model. 9 385
[5] Zhang B, Liu H, Yan B J and Ng H D 2020 Fuel 259 116220
[6] Zhang B 2019 Fuel 253 305
[7] Zhang B and Liu H 2019 Fuel 258 116132
[8] Lieberman D H and Shepherd J E 2007 Shock Waves 16 421
[9] Bull D C, Elsworth J E, McLeod M A and Hughes D 1981 Prog. Astronaut. Aeronaut. 75 61
[10] Donato M, Donato L and Lee J H 1981 Proceedings of the First Specialists Meeting of the Combustion Institute, July 20-25, 1981, Bordeaux, France
[11] Li J, Lai W H, Chung K and Lu F K 2008 Combust. Flame 154 331
[12] Ishii K and Kojima M 2007 Shock Waves 17 95
[13] Thomas G O, Sutton P and Edwards D H 1991 Combust. Flame 84 312
[14] Vidal P 2009 Int. J. Spray Combust 1 435
[15] Oran E S, Jones D A and Sichel M 1992 P. Roy. Soc. A-Math. Phys. 436 267
[16] Vollmer K G, Ettner F and Sattelmayer T 2012 Combust. Sci. Technol. 184 1903
[17] Kessler D A, Gamezo V N and Oran E S 2011 Proceedings of the 23th International Colloquium on the Dynamics of Explosions and Reacting Systems, July 24-29, 2011, Irvine, California, USA
[18] Boeck L R, Berger F M, Hasslberger J and Settalmayer T 2016 Shock Waves 26 181
[19] Ishii K and Kojima M 2007 Shock Waves 1 795
[20] Calhoon W H Jr and Sinha N 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit, January 10-13, 2005, Reno, Navada, USA, pp. 42-43
[21] Kessler D A, Gamezo V N and Oran E S 2011 Proc. Roy. Soc. A-Math. Phys. 370 567
[22] Ettner F, Vollmer K G and Sattelmayer T 2010 Proceedings of the 8th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, September 5-10, 2010, Yokohama, Japan
[23] Berets D J, Greene E F and Kistiakowsky G B 1950 J. Am. Chem. Soc. 72 1080
[24] Engebretsen T, Bjerketvedt D and Sonju O K 1992 Prog. Astronaut. Aeronaut. 153 324
[25] Kuznetsov M S, Dorofeev S B, Efimenko A A, Alekseev V I and Breitung W 1997 Shock Waves 7 297
[26] Kuznetsov M, Alekseev V I, Dorofeev S, Matsukov I D and Boccio J L 1998 P. Combust. Inst. 27 2241
[27] Qu Q, Khoo B C, Dou H S and Tsai H M 2008 Shock Waves 18 213
[28] Sánchez A L and Williams F A 2014 Prog. Energy Combust. Sci. 41 1
[29] Sochet I, Lamy T and Brossard J 2000 Shock Waves 10 363
[30] Sánchez A L and Williams F A 2014 Prog. Energy Combust. Sci. 41 1
[31] Tonello N A, Sichel M and Kauffman C W 1995 Shock Waves 5 225
[32] Huang J, Han W H, Gao X Y and Wang C 2019 Chin. Phys. B 28 074704
[33] Austin J M, Pintgen F and Shepherd J E 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit, January 5-8, 2004, Reno, Nevada
[1] Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
Yang Kang(康杨), Ning Li(李宁), Xiao-Long Huang(黄孝龙), and Chun-Sheng Weng(翁春生). Chin. Phys. B, 2022, 31(10): 104701.
[2] Acoustic characteristics of pulse detonation engine sound propagating in enclosed space
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Xiao-Long Huang(黄孝龙). Chin. Phys. B, 2020, 29(1): 014703.
[3] Effects of heat loss and viscosity friction at walls on flame acceleration and deflagration to detonation transition
Jin Huang(黄金), Wenhu Han(韩文虎), Xiangyu Gao(高向宇), Cheng Wang(王成). Chin. Phys. B, 2019, 28(7): 074704.
[4] Theoretical analysis on deflagration-to-detonation transition
Yun-Feng Liu(刘云峰), Huan Shen(沈欢), De-Liang Zhang(张德良), Zong-Lin Jiang(姜宗林). Chin. Phys. B, 2018, 27(8): 084703.
[5] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[6] Acoustic characteristics of pulse detonation engine with ellipsoidal reflector
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Chuan-Wei Wang(王传位). Chin. Phys. B, 2018, 27(10): 104703.
[7] Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
Yang Shen(沈洋), Hua Shen(申华), Kai-Xin Liu(刘凯欣), Pu Chen(陈 璞), De-Liang Zhang(张德良). Chin. Phys. B, 2016, 25(11): 114702.
[8] Particle path tracking method in two-and three-dimensional continuously rotating detonation engines
Zhou Rui (周蕊), Wu Dan (武丹), Liu Yan (刘岩), Wang Jian-Ping (王健平). Chin. Phys. B, 2014, 23(12): 124704.
[9] Experimental investigations of detonation initiation by hot jets in supersonic premixed flows
Han Xu (韩旭), Zhou Jin (周进), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2012, 21(12): 124702.
No Suggested Reading articles found!