Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094210    DOI: 10.1088/1674-1056/ab33f5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction

Shao-He Li(李绍和), Jiu-Sheng Li(李九生)
Center for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  

The digital coding metasurfaces need several kinds of meta-particle structures to obtain corresponding electromagnetic wave responses and require time-consuming optimization. In this paper, we present train-symbol-shaped meta-particles with various orientations utilizing Pancharatnam-Berry (PB) phase to achieve 1-, 2-, and 3-bit digital coding metasurfaces. Terahertz wave scattering patterns of the coding metasurfaces with regular and random sequences are given and discussed. They have strongly suppressed backward scattering with approximately -13.5 dB radar cross section (RCS) reduction in a wide band range from 0.85 THz to 1.6 THz. The proposed digital coding metasurfaces provide a simple way and new opportunities for manipulating terahertz wave scattering with polarization independence.

Keywords:  terahertz metasurface      terahertz optics      terahertz polarization  
Received:  24 March 2019      Revised:  09 June 2019      Published:  05 September 2019
PACS:  42.68.Mj (Scattering, polarization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355 and 61831012).

Corresponding Authors:  Jiu-Sheng Li     E-mail:  jshli@126.com

Cite this article: 

Shao-He Li(李绍和), Jiu-Sheng Li(李九生) Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction 2019 Chin. Phys. B 28 094210

[1] Zhang K, Wu Q, Fu J H, Meng F Y and Li L W 2012 IEEE Trans. Magn. 48 4289
[2] Shi H Y, Zhang A X, Zheng S, Li J X and Jiang Y S 2014 Appl. Phys. Lett. 104 034102
[3] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[4] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z and Zhang A X 2015 J. Appl. Phys. 117 044501
[5] Huang X J, Chen J and Yang H L 2017 J. Appl. Phys. 122 043102
[6] Estakhri N M and Alu A 2014 IEEE Antennas Wireless Propag. Lett. 13 1775
[7] Ni X, Wong Z J, Mrejen M, Wang Y and Zhang X 2015 Science 349 1310
[8] Yu N F, Aieta F, Genevet P, Kats M A, Gaburro Z and Capasso F 2012 Nano Lett. 12 6328
[9] Li X, Xiao S Y, Cai B G, He Q, Cui T J and Zhou L 2012 Opt. Lett. 37 4940
[10] Huang L L, Chen X Z, Mühlenbernd H, Zhang H, Chen S M, Bai B F, Tan Q F, Jin G F, Cheah K W, Qiu C W, Li J S, Zentgraf T and Zhang S 2013 Nat. Commun. 4 2808
[11] Wen D D, Yue F Y, Li G X, Zheng G X, Chan K L, Chen S M, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S and Chen X Z 2015 Nat. Commun. 6 8241
[12] Li J S, Zhao Z J and Yao J Q 2017 Opt. Express 25 29983
[13] Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H and Liu S G 2015 Adv. Opt. Mater. 3 1374
[14] Zhao J, Cheng Q, Wang T Q, Yuan W and Cui T J 2017 Opt. Express 25 1050
[15] Xu H, Ma S, Ling X, Zhang X, Tang S, Cai T, Sun S, He Q and Zhou L 2018 ACS Photon. 5 1691
[16] Berry M V 1987 J. Mod. Opt. 34 1401
[17] Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A, Wu Q, Qiu C W and Alú A 2015 Adv. Mater. 27 1195
[18] He X X, Wang G M, Cai T, Xiao J and Zhuang Y Q 2016 Opt. Express 24 27836
[19] Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H and Cui T J 2015 Light:Sci. & Appl. 4 e324
[20] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Light:Sci. &Appl. 3 e218
[1] A hybrid method of solving near-zone composite eletromagnetic scattering from targets and underlying rough surface
Xi-Min Li(李西敏), Jing-Jing Li(李晶晶), Qian Gao(高乾), Peng-Cheng Gao(高鹏程). Chin. Phys. B, 2020, 29(2): 024202.
[2] Electromagnetic scattering of charged particles in a strong wind-blown sand electric field
Xingcai Li(李兴财), Xuan Gao(高璇), Juan Wang(王娟). Chin. Phys. B, 2019, 28(3): 034208.
[3] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[4] Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique
Shuai Hu(胡帅), Taichang Gao(高太长), Hao Li(李浩), Lei Liu(刘磊), Ming Chen(陈鸣), Bo Yang(杨波). Chin. Phys. B, 2018, 27(5): 054215.
[5] Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber
Hui Zou(邹辉), Hui Xiong(熊慧), Yun-Shan Zhang(张云山), Yong Ma(马勇), Jia-Jin Zheng(郑加金). Chin. Phys. B, 2017, 26(12): 124216.
[6] A leap-frog discontinuous Galerkin time-domain method of analyzing electromagnetic scattering problems
Xue-Wu Cui(崔学武), Feng Yang(杨峰), Long-Jian Zhou(周龙建), Min Gao(高敏), Fei Yan(闫飞), Zhi-Peng Liang(梁志鹏). Chin. Phys. B, 2017, 26(10): 104101.
[7] High-reflectivity high-contrast grating focusing reflector on silicon-on-insulator wafer
Wenjing Fang(房文敬), Yongqing Huang(黄永清), Xiaofeng Duan(段晓峰), Kai Liu(刘凯), Jiarui Fei(费嘉瑞), Xiaomin Ren(任晓敏). Chin. Phys. B, 2016, 25(11): 114213.
[8] Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing
Jin-Bi Zhang(张金碧), Lei Ding(丁蕾), Ying-Ping Wang(王颖萍), Li Zhang(张莉), Jin-Lei Wu(吴金雷), Hai-Yang Zheng(郑海洋), Li Fang(方黎). Chin. Phys. B, 2016, 25(3): 034201.
[9] Calculation and analysis of the number of return photons from sodium laser beacon excited by the long pulse laser with circular polarization
Liu Xiang-Yuan, Qian Xian-Mei, Li Yu-Jie, Rao Rui-Zhong. Chin. Phys. B, 2014, 23(12): 124213.
[10] Solving the atmospheric scattering optical transfer function using the multi-coupled single scattering method
Sun Bin, Hong Jin, Sun Xiao-Bing . Chin. Phys. B, 2014, 23(9): 094201.
[11] Polarized radiative transfer considering thermal emission in semitransparent media
Ben Xun, Yi Hong-Liang, Tan He-Ping. Chin. Phys. B, 2014, 23(9): 099501.
[12] Reverse electric field Monte Carlo simulation for vector radiative transfer in the atmosphere
Li Xu-You, Sun Bo, Yu Ying-Ying. Chin. Phys. B, 2014, 23(6): 064219.
[13] Scattering and propagation of terahertz pulses in random soot aggregate systems
Li Hai-Ying, Wu Zhen-Sen, Bai Lu, Li Zheng-Jun. Chin. Phys. B, 2014, 23(5): 054201.
[14] Multi-coupled single scattering method of solving vector radiative transfer equations
Sun Bin, Wang Han, Sun Xiao-Bing, Hong Jin, Zhang Yun-Jie. Chin. Phys. B, 2012, 21(12): 129501.
[15] Electromagnetic scattering of the carbon nanotubes excited by an electric line source
Wang Yue, Wu Qun, Wu Yu-Ming, He Xun-Jun, Li Le-Wei. Chin. Phys. B, 2012, 21(1): 014212.
No Suggested Reading articles found!