Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128401    DOI: 10.1088/1674-1056/27/12/128401

“Refractivity-from-clutter” based on local empirical refractivity model

Xiaofeng Zhao(赵小峰)
College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China

Constructing sophisticated refractivity models is one of the key problems for the RFC (refractivity from clutter) technology. If prior knowledge of the local refractivity environment is available, more accurate parameterized model can be constructed from the statistical information, which in turn can be used to improve the quality of the local refractivity retrievals. The validity of this proposal was demonstrated by range-dependent refractivity profile inversions using the adjoint parabolic equation method to the Wallops'98 experimental data.

Keywords:  refractivity-from-clutter      parabolic equation      adjoint method      empirical refractivity model  
Received:  14 July 2018      Revised:  23 September 2018      Published:  05 December 2018
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 41775027 and 41405025).

Corresponding Authors:  Xiaofeng Zhao     E-mail:

Cite this article: 

Xiaofeng Zhao(赵小峰) “Refractivity-from-clutter” based on local empirical refractivity model 2018 Chin. Phys. B 27 128401

[1] Zhang J P, Zhang Y S, Wu Z S, Zhang Y S and Hu R X 2015 Acta Phys. Sin. 64 124101 (in Chinese)
[2] Penton S E and Hackett E E 2018 Radio Sci. 53 804
[3] Douvenot R, Fabbro V, Gerstoft P, Bourlier C and Saillard J 2008 Radio Sci. 43 RS6005
[4] Zhao X F, Huang S X, Xiang J and Shi W L 2011 Chin. Phys. B 20 099201
[5] Zhu X, Li J, Zhu M, Jiang Z and Li Y 2018 IEEE Geosci. Remote S. 15 1307
[6] Zhao X F and Huang S X 2012 J. Atmos. Sci. 69 2808
[7] Zhao X F and Huang S X 2014 J. Atmos. Oceanic Technol. 31 1250
[8] Zhao X F, Yardim C, Wang D X and Howe B M 2017 J. Atmos. Oceanic Technol. 34 1113
[9] Karimian A, Yardim C, Gerstoft P, HodgkissWS and Barrios A E 2011 Radio Sci. 46 RS6013
[10] Rogers L T, Hattan C P and Stapleton J K 2000 Radio Sci. 35 955
[11] Gerstoft P, Rogers L T, Krolik J L and Hodgkiss W S 2003 Radio Sci. 38 8053
[12] Liu X, Huang W and Gill E W 2017 IEEE Geosci. Remote S. 14 1740
[13] Xie J, Chen W, Zhang D, Zu S and Chen Y 2017 IEEE Geosci. Remote S. 14 1213
[14] Li J, Innanen K A, Tao G 2017 Geophysics 82 D265
[15] Kuttler J R and Dockery G D 1991 Radio Sci. 26 381
[16] Zhu C, Byrd R H, Lu P and Nocedal J 1997 ACM Trans. Math. Softw. 23 550
[1] Theoretical framework for geoacoustic inversion by adjoint method
Yang Wang(汪洋), Xiao-Feng Zhao(赵小峰). Chin. Phys. B, 2019, 28(10): 104301.
[2] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[3] Three-dimensional parabolic equation model for seismo-acoustic propagation:Theoretical development and preliminary numerical implementation
Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Hai-Gang Zhang(张海刚). Chin. Phys. B, 2017, 26(11): 114301.
[4] Developments of parabolic equation method in the period of 2000-2016
Chuan-Xiu Xu(徐传秀), Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Jia-Qi Liu(刘佳琪), Shi-Zhao Zhang(张士钊). Chin. Phys. B, 2016, 25(12): 124315.
[5] Second-order two-scale analysis and numerical algorithms for the hyperbolic-parabolic equations with rapidly oscillating coefficients
Dong Hao, Nie Yu-Feng, Cui Jun-Zhi, Wu Ya-Tao. Chin. Phys. B, 2015, 24(9): 090204.
[6] Estimation of lower refractivity uncertainty from radar sea clutter using Bayesian-MCMC method
Sheng Zheng. Chin. Phys. B, 2013, 22(2): 029302.
No Suggested Reading articles found!