Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120202    DOI: 10.1088/1674-1056/27/12/120202
GENERAL Prev   Next  

N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method

Si-Qi Xu(徐思齐)1,2, Xian-Guo Geng(耿献国)1
1 School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China;
2 College of Civil Engineering, Xinyang Normal University, Xinyang 464000, China

In this paper, a nonlocal two-wave interaction system from the Manakov hierarchy is investigated via the Riemann-Hilbert approach. Based on the spectral analysis of the Lax pair, a Riemann-Hilbert problem for the nonlocal two-wave interaction system is constructed. By discussing the solutions of this Riemann-Hilbert problem in both the regular and non-regular cases, we explicitly present the N-soliton solution formula of the nonlocal two-wave interaction system. Moreover, the dynamical behaviour of the single-soliton solution is shown graphically.

Keywords:  nonlocal two-wave interaction system      Riemann-Hilbert problem      N-soliton solutions  
Received:  11 July 2018      Revised:  15 September 2018      Published:  05 December 2018
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11331008 and 11522112).

Corresponding Authors:  Si-Qi Xu     E-mail:

Cite this article: 

Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国) N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method 2018 Chin. Phys. B 27 120202

[1] Agrawal G P 1996 Nonlinear Optics (Academic Press)
[2] Manakov S 1974 Sov. Phys. JETP 38 248
[3] Kaup D J and Malomed B A 1993 Phys. Rev. A 48 599
[4] Menyuk C R 1987 IEEE J. Quantum Electron. 23 174
[5] Radhakrishnan R and Lakshmanan M 1995 J. Phys. A: Math. Gen. 28 2683
[6] Radhakrishnan R and Aravinthan K 2007 J. Phys. A: Math. Theor. 40 13023
[7] Kanna T, Tsoy E N and Akhmediev N 2004 Phys. Lett. A 330 224
[8] Nakkeeran K 2000 Phys. Rev. E 62 1313
[9] Xu T and Tian B 2010 J. Phys. A 43 245205
[10] Wang D S, Zhang D J and Yang J K 2010 J. Math. Phys. 51 133
[11] Geng X G, Liu H and Zhu J Y 2015 Stud. Appl. Math. 135 310
[12] Wu L H, Geng X G and He G L 2016 Applicable Analysis 95 769
[13] Geng X G and Liu H 2018 J. Nonlinear Sci. 28 739
[14] Degasperis A and Lombardo S 2013 Phys. Rev. E 88 052914
[15] Wu L H, He G L and Geng X G 2013 Appl. Math. Comput. 2 20
[16] Zhang G Q, Yan Z Y and Wen X Y 2018 Physica D 366 27
[17] Borgna J P, Degasperis A, De Leo M F and Rial D 2012 J. Math. Phys. 53 043701
[18] Ablowitz M J and Fokas A S 2003 Complex Variables, Introduction and Applications (New York: Cambridge University Press)
[19] Fokas A S, Its A R, Kapaev A A and Novokshenov V Yu 2006 Painlevé Transcendents, The Riemann-Hilbert Approach, American Mathematical Society, Providence, RI
[20] Shchesnovich V S and Yang J K 2003 J. Math. Phys. 44 4604
[21] Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA
[22] Geng X G and Wu J P 2016 Wave Motion 60 62
[23] Wei J, Wang X and Geng X G 2018 Commun. Nonlinear Sci. Numer. Simul. 59 1
[24] Geng X G and Liu H 2018 J. Nonlinear Sci. 28 739
[25] Geng X G and Zhai Y Y 2018 Chin. Phys. B 27 040201
[26] Chen J C, Ma Z Y and Hu Y H 2017 Chin. Phys. Lett. 34 010201
[27] Zhang Y and Zhou R G 2016 Chin. Phys. Lett. 33 110203
[28] Qian C, Rao J G, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201
[29] Song C Q, Xiao D M and Zhu Z N 2017 Chin. Phys. B 26 100204
[1] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[2] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[3] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[4] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[5] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[6] Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble
Xiao-Qiang Su(苏晓强) and You-Quan Zhao(赵有权). Chin. Phys. B, 2020, 29(12): 120506.
[7] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[8] On superintegrable systems with a position-dependent mass in polar-like coordinates
Hai Zhang(章海)†. Chin. Phys. B, 2020, 29(10): 100201.
[9] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[10] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[11] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[12] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
[13] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[14] Lax pair and vector semi-rational nonautonomous rogue waves fora coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[15] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
No Suggested Reading articles found!