Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064202    DOI: 10.1088/1674-1056/26/6/064202

Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state

Xiang Yan(闫香)1,2, Peng-Fei Zhang(张鹏飞)1, Jing-Hui Zhang(张京会)1, Xiao-Xing Feng(冯晓星)1, Chun-Hong Qiao(乔春红)1, Cheng-Yu Fan(范承玉)1
1 Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China
Abstract  The entangled orbital angular momentum (OAM) three photons propagating in Kolmogorov weak turbulence are investigated. Here, the single phase screen model is used to study the entanglement evolution of OAM photons. The results indicate that the entangled OAM three-qubit state with higher OAM modes will be more robust against turbulence. Furthermore, it is found that the entangled OAM three-qubit state has a higher overall transmission for small OAM values.
Keywords:  three-qubit state      turbulence atmosphere      Kolmogorov turbulence     
Received:  14 November 2016      Published:  05 June 2017
PACS:  42.50.Ar  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Defense Innovation Foundation of China, Chinese Academy of Sciences (Grant No. CXJJ-16S080).
Corresponding Authors:  Cheng-Yu Fan     E-mail:

Cite this article: 

Xiang Yan(闫香), Peng-Fei Zhang(张鹏飞), Jing-Hui Zhang(张京会), Xiao-Xing Feng(冯晓星), Chun-Hong Qiao(乔春红), Cheng-Yu Fan(范承玉) Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state 2017 Chin. Phys. B 26 064202

[1] Jeong H and Kim M S 2002 Phys. Rev. A 65 042305
[2] Ralph T C, Gilchrist A and Milburn G J 2003 Phys. Rev. A 68 042319
[3] Van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
[4] Jeong H, Kim M S and Lee J 2001 Phys. Rev. A 64 052308
[5] Gottesman D and Preskill J 2001 Phys. Rev. A 63 022309
[6] Cerf N J 2001 Phys. Rev. A 63 052311
[7] Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[8] Lamont M. R. E., Y. Okawachi and A. L. Gaeta 2013 Opt. Lett. 38 3478
[9] Bourennane M, Karlsson A and Björk G 2001 Phys. Rev. A 64 012306
[10] Mair A, Vaziri G W A and Zeilinger A 2001 Nature 412 313
[11] Kawase D, Miyamoto Y, Takeda M, Sasaki K and Takeuchi S 2008 Phys. Rev. Lett. 101 050501
[12] Pors J B, Oemrawsingh S S R, Aiello A, van Exter M P, Eliel E R, Hooft G W and Woerdman J P 2008 Phys. Rev. Lett. 101 120502
[13] Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P J, Padgett M J and Boyd R W 2012 Opt. Express 20 13195
[14] Rodenburg B, Mirhosseini M, Malik M, Magaña-Loaiza O S, Yanakas M, Maher L, Steinhoff N K, Tyler G A and R. W. Boyd 2014 New J. Phys. 16 033020
[15] Gopaul C andAndrews R 2007 New J. Phys. 9 94
[16] Sheng X, Zhang Y, Zhao F, Zhang L and Zhu Y 2012 Opt. Lett. 37 2607
[17] Smith B J and Raymer M G 2006 Phys. Rev. A 74 062104
[18] Pros B J, Monken C H, Elie E R and Woerdman P 2011 Opt. Express 19 6671
[19] Roux F S 2011 Phys. Rev. A 83 053822
[20] Brünner T and Roux F S 2013 New J. Phys. 15 063005
[21] Cunha Pereira M V, Filpi L A P and Monken C H 2013 Phys. Rev. A 88 053836
[22] Ibrahim A H, Roux F S, Mclaren M, Thomas K and Forbes A 2013 Phys. Rev. A 88 012312
[23] Gonzalez Alonso J R and Brun T A 2013 Phys. Rev. A 88 022326
[24] Zou L, Wang L, Zhao S M and Chen H W 2016 Chin. Phys. B 25 114215
[25] Paterson C 2005 Phys. Rev. Lett. 94 153901
[26] Jha A K, Tyler G A and Boyd R W 2010 Phys. Rev. A 81 053832
[27] Yan X, Zhang P F, Zhang J H, Qiao C H and Fan C Y 2016 J. Opt. Soc. Am. A 33 1831
[28] Ibrahim A H, Roux F S and Konrad T 2014 Phys. Rev. A 90 052115
[29] Roux F S 2014 J. Phys. A: Math. Theor. 47 195302
[30] Leonhard N D, Shatokhin V N and Buchleitner A 2015 Phys. Rev. A 91 012345
[31] Zhao S M, Leach J, Gong L Y, Ding J and Zheng B Y 2012 Opt. Express 20 452
[32] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[33] Stribling B E, Welsh B M and Roggemann M C 1995 Proc. SPIE 2471 181
[1] Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model
Jing Ma(马晶), Yu-Long Fu(付玉龙), Si-Yuan Yu(于思源), Xiao-Long Xie(谢小龙), Li-Ying Tan(谭立英). Chin. Phys. B, 2018, 27(3): 034201.
[2] Quantum polarization fluctuations of partially coherent dark hollow beams in non-Kolmogorov turbulence atmosphere
Xiang Yan(闫香), Peng-Fei Zhang(张鹏飞), Jing-Hui Zhang(张京会), Chun-Hong Qiao(乔春红), Cheng-Yu Fan(范承玉). Chin. Phys. B, 2016, 25(8): 084204.
[3] A further study on the spreading and directionality of Gaussian array beams in non-Kolmogorov turbulence
Lu Lu, Ji Xiao-Ling, Deng Jin-Ping, Li Xiao-Qing. Chin. Phys. B, 2014, 23(6): 064209.
[4] Propagation properties of partially coherent Hermite–Gaussian beams through non-Kolmogorov turbulence
He Xue-Mei, Lü Bai-Da. Chin. Phys. B, 2011, 20(9): 094210.
No Suggested Reading articles found!