Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 034401    DOI: 10.1088/1674-1056/26/3/034401
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

Thermal properties of two-dimensional materials

Gang Zhang(张刚), Yong-Wei Zhang(张永伟)
Institute of High Performance Computing, A*STAR, Singapore
Abstract  

Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS2 and the new strategy for thermal management of MoS2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator.

Keywords:  thermal conduction      two-dimensional materials  
Received:  15 September 2016      Revised:  17 November 2016      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  73.43.-f (Quantum Hall effects)  
Fund: 

Project supported by the Science and Engineering Research Council, Singapore (Grant No. 152-70-00017) and the Agency for Science, Technology and Research (A*STAR), Singapore.

Corresponding Authors:  Gang Zhang     E-mail:  zhangg@ihpc.a-star.edu.sg

Cite this article: 

Gang Zhang(张刚), Yong-Wei Zhang(张永伟) Thermal properties of two-dimensional materials 2017 Chin. Phys. B 26 034401

[1] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotech. 9 768
[2] Qiu H, Pan L, Yao Z, Li J, Shi Y and Wang X 2012 Appl. Phys. Lett. 100 123104
[3] Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J and Wang X 2013 Nat. Commun. 4 2642
[4] Yu Z, Pan Y, Shen Y, Wang Z, Ong Z Y, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang Y W, Shi Y and Wang X 2014 Nat. Commun. 5 5290
[5] Liu Y, Wu H, Cheng H C, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N, Huang Y and Duan X 2015 Nano Lett. 15 3030
[6] Yu Z, Ong Z Y, Pan Y, Cui Y, Xin R, Shi Y, Wang B, Zhang Y W, Zhang G and Wang X 2016 Adv. Mater. 28 547
[7] Moore G E 1998 P. IEEE 86 82
[8] Lan Y, Minnich A J, Chen G and Ren Z 2010 Adv. Funct. Mater. 20 357
[9] Zhang G and Zhang Y W 2013 Phys. Stat. Sol. RRL 7 754
[10] Balandin A A 2011 Nat. Mater. 10 569
[11] Sadeghi M M, Pettes M T and Shi L 2012 Solid State Commum. 152 1321
[12] Zhang G and Li B 2010 Nanoscale 2 1058
[13] Zhang G and Manjooran N 2014 Nanofabrication and Its Application in Renewable Energy (Cambridge: Royal Society of Chemistry) pp. 101-119
[14] Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410
[15] Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131
[16] Liu S, Xu X, Xie R, Zhang G and Li B 2012 Eur. Phys. J. B 85 337
[17] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[18] Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L and Ruoff R S 2010 Nano Lett. 10 1645
[19] Marconnet A M, Panzer M A and Goodson K E 2013 Rev. Mod. Phys. 85 1295
[20] Guo Z, Zhang D and Gong X G 2009 Appl. Phys. Lett. 95 163103
[21] Xu Y, Chen X, Gu B L and Duan W 2009 Appl. Phys. Lett. 95 233116
[22] Nika D L, Askerov A S and Balandin A A 2012 Nano Lett. 12 3238
[23] Yu C and Zhang G 2013 J. Appl. Phys. 113 044306
[24] Shen Y, Xie G, Wei X, Zhang K, Tang M, Zhong J, Zhang G and Zhang Y W 2014 J. Appl. Phys. 115 063507
[25] Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B and Thong J T L 2011 Nano Lett. 11 113
[26] Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F and Lau C N 2008 Appl. Phys. Lett. 92 151911
[27] Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B and Özyilmaz B 2014 Nat. Commun. 5 3689
[28] Guo Z X, Zhang D and Gong X G 2011 Phys. Rev. B 84 075470
[29] Ong Z Y and Pop E 2011 Phys. Rev. B 84 075471
[30] Chen J, Zhang G and Li B 2013 Nanoscale 5 532
[31] Yu C and Zhang G 2013 J. Appl. Phys. 113 214304
[32] Peng X F, Wang X J, Chen L Q and Chen K Q 2012 Europhys. Lett. 98 56001
[33] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
[34] Li X, Chen J, Yu C and Zhang G 2013 Appl. Phys. Lett. 103 013111
[35] Pei Q X, Sha Z D and Zhang Y W 2011 Carbon 49 4752
[36] Huang W, Pei Q X, Liu Z and Zhang Y W 2012 Chem. Phys. Lett. 552 97
[37] Liu X, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 12541
[38] Wang Y, Zhan H, Xiang Y, Yang C, Wang C and Zhang Y 2015 J. Phys. Chem. C 119 12731
[39] Wang Y, Yang C, Cheng Y and Zhang Y 2015 RSC Adv. 5 82638.
[40] Cheng Y, Koh L, Li D, Ji B, Zhang Y, Yeo J, Guan G, Han M and Zhang Y 2015 ACS Appl. Mater. Inter. 7 21787
[41] Zhang Y, Pei Q, Wang C, Cheng Y and Zhang Y 2013 J. Appl. Phys. 114 073504
[42] Wei N, Xu L Q, Wang H Q and Zheng J C 2011 Nanotechnology 22 105705
[43] Li X, Maute K, Dunn M and Yang R 2010 Phys. Rev. B 81 245318
[44] Zhan H, Zhang Y, Bell J, Mai Y and Gu Y 2014 Carbon 77 416
[45] Zhan H, Zhang G, Bell J and Gu Y 2014 Appl. Phys. Lett. 105 153105
[46] Xie G, Shen Y, Wei X, Yang L, Xiao H, Zhong J and Zhang G 2014 Sci. Rep. 4 5085
[47] Zhan H, Zhang Y, Bell J and Gu Y 2015 J. Phys. Chem. C 119 1748
[48] Zhang Y, Cheng Y, Pei Q, Wang C and Xiang Y 2012 Phys. Lett. A 376 3668
[49] Lan J, Cai Y, Zhang G, Wang J S and Zhang Y W 2014 J. Phys. D-Appl. Phys. 47 265303
[50] Xie Z X, Chen K Q and Duan W H 2011 J. Phys.-Condens. Matter 23 315302
[51] Peng X F, Wang X J, Gong Z Q and Chen K Q 2011 Appl. Phys. Lett. 99 233105
[52] Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
[53] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 104508
[54] Chen J, Zhang G and Li B 2012 Nano Lett. 12 2826
[55] Li X and Zhang G 2013 Front. Phys. 1 19
[56] Liu X, Zhang G, Pei Q X and Zhang Y W 2013 Appl. Phys. Lett. 103 133113
[57] Zhang G and Li B 2005 J. Chem. Phys. 123 114714
[58] Zhang G and Li B 2005 J. Chem. Phys. 123 014705
[59] Cai Y, Lan J, Zhang G and Zhang Y W 2014 Phys. Rev. B 89 035438
[60] Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F and Katiyar R S 2013 J. Phys. Chem. C 117 9042
[61] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Hight Walker A R and Xing H G 2014 ACS Nano 8 986
[62] Fan D D, Liu H J, Cheng L, Jiang P H, Shi J and Tang X F 2014 Appl. Phys. Lett. 105 133113
[63] Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103
[64] Jiang J W, Park H S and Rabczuk T 2013 J. Appl. Phys. 114 064307
[65] Wu X F, Yang N and Luo T F 2015 Appl. Phys. Lett. 107 191907
[66] Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J and Zhang G 2014 Appl. Phys. Lett. 105 103902
[67] Li W, Zhang G, Guo M and Zhang Y W 2014 Nano Res. 7 518
[68] Zhang G, Zhang Q X, Bui C T, Lo G Q and Li B 2009 Appl. Phys. Lett. 94 213108
[69] Liu X, Zhang G and Zhang Y W 2016 Nano Res. 9 2372
[70] Li W, Guo M, Zhang G and Zhang Y W 2014 Chem. Mater. 26 5625
[71] Wang Y, Ruan X L and Roy A K 2012 Phys. Rev. B 85 205311
[72] Ding Z W, Pei Q X, Jiang J W and Zhang Y W 2015 J. Phys. Chem. C 119 16358
[73] Yu Z, Sergeant N, Skauli T, Zhang G, Wang H and Fan S 2013 Nat. Commun. 4 1730
[74] Peng J, Zhang G and Li B 2015 Appl. Phys. Lett. 107 133108
[75] Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Buljan H and Soljačić M 2012 Phys. Rev. B 85 155422
[76] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotech. 9 372
[77] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[78] Dai J and Zeng X C 2014 J. Phys. Chem. Lett. 5 1289
[79] Cai Y, Zhang G and Zhang Y W 2014 Sci. Rep. 4 6677
[80] Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368
[81] Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051
[82] Du Y, Liu H, Xu B, Sheng L, Yin J, Duan C G and Wan X 2015 Sci. Rep. 5 8921
[83] Ong Z Y, Zhang G and Zhang Y W 2014 J. Appl. Phys. 116 214505
[84] Ma X, Lu W, Chen B, Zhong D, Huang L, Dong L, Jin C and Zhang Z 2015 AIP Adv. 5 107112
[85] Li W, Yang Y, Zhang G and Zhang Y W 2015 Nano Lett. 15 1691
[86] Nie A, Cheng Y, Ning S, Foroozan T, Yasaei P, Li W, Song B, Yuan Y, Chen L, Salehi-Khojin A, Mashayek F and Shahbazian-Yassar R 2016 Nano Lett. 16 2240
[87] Ong Z Y, Cai Y, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 25272
[88] Xu W, Zhu L, Cai Y, Zhang G and Li B 2015 J. Appl. Phys. 117 214308
[89] Zhang Y, Pei Q, Jiang J, Wei N and Zhang Y 2016 Nanoscale 8 483
[90] Hong Y, Zhang J C, Huang X and Zeng X C 2015 Nanoscale 7 18716
[91] Zhu L, Zhang G and Li B 2014 Phys. Rev. B 90 214302
[92] Jain A and McGaughey A J H 2015 Sci. Rep. 5 8501
[93] Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R and Su G 2014 Sci. Rep. 4 6946
[94] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F and Zhang Q J 2014 Sci. Rep. 4 6452
[95] Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393
[96] Liao B, Zhou J, Qiu B, Dresselhaus M S and Chen G 2015 Phys. Rev. B 91 235419
[97] Zhou H, Cai Y, Zhang G and Zhang Y W 2016 J. Mater. Res. 31 3179
[98] Yang L, Yang N and Li B 2014 Nano Lett. 14 1734
[99] Xu W and Zhang G 2016 J. Phys.-Condens. Matter 28 175401
[100] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[101] Hu J, Ruan X and Chen Y P 2009 Nano Lett. 9 2730
[102] Yang N, Zhang G and Li B 2009 Appl. Phys. Lett. 95 033107
[103] Zhang G and Zhang H 2011 Nanoscale 3 4604
[104] Wang Y, Chen S and Ruan X 2012 Appl. Phys. Lett. 100 163101
[105] Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T 2012 Sci. Rep. 2 523
[106] Chen R, Cui Y, Tian H, Yao R, Liu Z, Shu Y, Li C, Yang Y, Ren T, Zhang G and Zou R 2015 Sci. Rep. 5 8884
[107] Liu X, Zhang G and Zhang Y W 2015 Nano Res. 8 2755
[108] Xu Y, Li Z and Duan W H 2014 Small 10 2182
[109] Pop E, Varshney V and Roy A K 2012 MRS Bull. 37 1273
[110] Chen X and Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese)
[111] Zhang G and Huang S Y 2013 Physics 42 100 (in Chinese)
[112] Xu X, Chen J and Li B 2016 J. Phys.-Condens. Matter 28 483001
[113] Gu X and Yang R 2015 arXiv:1509.07762 [cond-mat.mtrl-sci]
[114] Jang H, Wood J, Ryder C, Hersam M and Cahill D 2015 Adv. Mater. 27 8017)
[115] Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D and Xu X 2015 Nat. Commun. 6 8572
[116] Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Choe H S, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S and Wu J 2015 Nat. Commun. 6 8573
[117] Ouhe R G, Wang Y Y and Lu J 2015 Chin. Phys. B 24 088105
[118] Gao J and Zhao J 2012 Sci. Rep. 2 861
[119] Gu X and Yang R 2015 J. Appl. Phys. 117 025102
[120] Gao J, Zhang G and Zhang Y W 2016 Sci. Rep. 6 29107
[121] Zhou H, Cai Y, Zhang G and Zhang Y W 2016 Phys. Rev. B 94 045423
[122] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[123] Tand D W, Wang Z L and Yuan K P 2015 Chin. Phys. Lett. 32 104401
[124] Ding X and Ming Y 2014 Chin. Phys. Lett. 31 046601
[125] Sun L K, Yu Z F and Huang J 2015 Acta Phys. Sin. 64 224401 (in Chinese)
[126] Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Ajayan P M and Tour J M 2014 Nano Res. 7 1232
[127] Tian Z, Esfarjani K and Chen G 2012 Phys. Rev. B 86 235304
[128] Xu W, Zhang G and Li B 2014 J. Appl. Phys. 116 134303
[129] Ong Z Y and Zhang G 2015 Phys. Rev. B 91 174302
[130] Zhou Y, Zhang X and Hu M 2016 Nanoscale 8 1994
[131] Ong Z Y, Zhang G and Zhang Y W 2016 Phys. Rev. B 93 075406
[132] Zhan H, Zhang G, Zhang Y, Tan V B C, Bell J M and Gu Y 2016 Carbon 98 232
[133] Zhu T and Ertekin E 2014 Phys. Rev. B 90 195209
[134] Chen J, Walther J H and Koumoutsakos P 2015 Adv. Funct. Mater. 25 7539
[135] Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954
[1] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[2] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[3] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[4] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[5] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[6] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[7] Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure
Hongbo Liu(刘宏波). Chin. Phys. B, 2020, 29(8): 087701.
[8] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[9] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[10] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[11] Theoretical analysis of cross-plane lattice thermal conduction in graphite
Yun-Feng Gu(顾云风). Chin. Phys. B, 2019, 28(6): 066301.
[12] Efficient doping modulation of monolayer WS2 for optoelectronic applications
Xinli Ma(马新莉), Rongjie Zhang(张荣杰), Chunhua An(安春华), Sen Wu(吴森), Xiaodong Hu(胡晓东), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(3): 037803.
[13] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
[14] Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant
Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣). Chin. Phys. B, 2019, 28(11): 118101.
[15] Emerging properties of two-dimensional twisted bilayer materials
Yang Cheng(程阳), Chen Huang(黄琛), Hao Hong(洪浩), Zixun Zhao(赵子荀), Kaihui Liu(刘开辉). Chin. Phys. B, 2019, 28(10): 107304.
No Suggested Reading articles found!