Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087401    DOI: 10.1088/1674-1056/25/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vortex quasi-crystals in mesoscopic superconducting samples

Jing-Kun Wang(王璟琨)1, Wei Zhang(张威)1,2, Sá de Melo C A R3
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
3 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Abstract  

There seems to be a one to one correspondence between the phases of atomic and molecular matter (AMOM) and vortex matter (VM) in superfluids and superconductors. Crystals, liquids, and glasses have been experimentally observed in both AMOM and VM. Here, we propose a vortex quasi-crystal state which can be stabilized due to boundary and surface energy effects for samples of special shapes and sizes. For finite sized pentagonal samples, it is proposed that a phase transition between a vortex crystal and a vortex quasi-crystal occurs as a function of magnetic field and temperature as the sample size is reduced.

Keywords:  vortex matter      quasi-crystal      mesoscopic superconductor  
Received:  26 February 2016      Revised:  23 April 2016      Accepted manuscript online: 
PACS:  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.78.Na (Mesoscopic and nanoscale systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274009, 11434011, and 111522436), the National Key Basic Research Program of China (Grant No. 2013CB922000), the Research Funds of Renmin University of China (Grant Nos. 10XNL016 and 16XNLQ03), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201404).

Corresponding Authors:  Wei Zhang     E-mail:  wzhangl@ruc.edu.cn

Cite this article: 

Jing-Kun Wang(王璟琨), Wei Zhang(张威), Sá de Melo C A R Vortex quasi-crystals in mesoscopic superconducting samples 2016 Chin. Phys. B 25 087401

[1] Crabtree G W and Nelson D R 1997 Physics Today, pp. 38-45
[2] Safar H, Gammel P L, Huse D A, Bishop D J, Lee W C, Giapintzakis J and Ginsberg D M 1993 Phys. Rev. Lett. 70 3800
[3] Kwok W K, Fendric J, Fleshler S, Welp U, Downey J and Crabtree G W 1994 Phys. Rev. Lett. 72 1092
[4] Abrikosov A A 1957 Sov. Phys. JETP 5 1174
[5] Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A and Fisher M P A 1989 Phys. Rev. Lett. 63 1511
[6] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[7] Sá de Melo C A R 2007 "Vortex Quasi-crystals", manuscript No. LH7266, 05Aug99. See this unpublished work in preprint No. cond-mat/0703156
[8] Misko V, Savel'ev S and Nori F 2005 Phys. Rev. Lett. 95 177007
[9] Misko V, Savel'ev S and Nori F 2006 Phys. Rev. B 74 024522
[10] Villegas J E, Montero M I, Li C P and Schuller I K 2006 Phys. Rev. Lett. 97 027002
[11] Kemmler M, Gürlich C, Sterck A, Pöhler H, Neuhaus M, Siegel M, Kleiner R and Koelle D 2006 Phys. Rev. Lett. 97 147003
[12] Silhanek A V, Gillijns W, Moshchalkov V V, Zhu B Y, Moonens J and Leunissen L H A 2006 Appl. Phys. Lett. 89 152507
[13] Denton A R and Lowen H 1998 Phys. Rev. Lett. 81 469
[14] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[15] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
[16] Tung S, Schweikhard V and Cornell E A 2006 Phys. Rev. Lett. 97 240402
[17] Geim A K, Griogorieva I V, Dubonos S V, Lok J G S, Maan J C, Filippov A E and Peeters F M 1997 Nature 390 259
[18] Geim A K, Dubonos S V, Palacios J J, Grigorieva I V, Henini M and Schermer J J 2000 Phys. Rev. Lett. 85 1528
[19] Chibotaru L F, Ceulemans A, Bruyndoncx V and Moshchalkov V V 2000 Nature 408 833
[20] Chibotaru L F, Ceulemans A, Bruyndoncx V and Moshchalkov V V 2001 Phys. Rev. Lett. 86 1323
[21] Dikin D A, Chandrasekhar V, Misko V R, Fomin V M and Devreese J T 2003 Eur. Phys. J. B 34 231
[22] Berdiyorov G R, Milosevic M V and Peeters F M 2006 Phys. Rev. Lett. 96 207001
[23] Saint-James D, Sarma G and Thomas E J 1969 Type II superconductivity (Oxford:Pergamon Press) Chap. 3
[24] Steinhardt P J and Jeong H C 1996 Nature 382 431
[25] Jeong H C and Steinhardt P J 1997 Phys. Rev. B 55 3520
[26] Henrici P 1986 Applied and computational complex analysis (New York:John Wiley and Sons) Vol. III, Chap. 16
[27] Sun L, Huo Y, Zhou C, Liang J H, Zhang X Z, Xu Z J, Wang Y and Wu Y Z 2015 Acta Phys. Sin. 64 197502 (in Chinese)
[28] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[29] Halperin B I and Nelson D R 1978 Phys. Rev. Lett. 41 121
[30] Halperin B I and Nelson D R 1979 Phys. Rev. B 19 2457
[31] Young A P 1979 Phys. Rev. B 19 1855
[32] Cabral L R E, Baelus B J and Peeters F M 2004 Phys. Rev. B 70 144523
[33] Grigorieva I V, Escoffier W, Richardson J, Vinnikov L Y, Dubonos S and Oboznov V 2006 Phys. Rev. Lett. 96 077005
[1] Exact analytic solutions for an elliptic hole with asymmetric collinear cracks in a one-dimensional hexagonal quasi-crystal
Guo Jun-Hong(郭俊宏) and Liu Guan-Ting(刘官厅). Chin. Phys. B, 2008, 17(7): 2610-2620.
[2] On the interaction between dislocations and cracks in one-dimensional hexagonal quasi-crystals
Liu Guan-Ting (刘官厅), Guo Rui-Ping (郭瑞平), Fan Tian-You (范天佑). Chin. Phys. B, 2003, 12(10): 1149-1155.
[3] Elastic analysis of a mode II crack in a decagonal quasi-crystal
Li Xian-Fang (李显方), Fan Tian-You (范天佑). Chin. Phys. B, 2002, 11(3): 266-271.
No Suggested Reading articles found!