Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 065201    DOI: 10.1088/1674-1056/25/6/065201

Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis

Hong-Xing Yang(杨洪星)1, Hong-Bo Fu(付洪波)1,2, Hua-Dong Wang(王华东)1,2, Jun-Wei Jia(贾军伟)1,2, Markus W Sigrist3, Feng-Zhong Dong(董凤忠)1, 2
1 Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 ETH Zürich, Institute for Quantum Electronics, Otto-Stern-Weg 1, CH-8093 Zurich, Switzerland

Laser-induced breakdown spectroscopy (LIBS) is a versatile tool for both qualitative and quantitative analysis. In this paper, LIBS combined with principal component analysis (PCA) and support vector machine (SVM) is applied to rock analysis. Fourteen emission lines including Fe, Mg, Ca, Al, Si, and Ti are selected as analysis lines. A good accuracy (91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA. It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program, but also solve the problem of linear inseparability by combining PCA and SVM. By this method, the ability of LIBS to classify rock is validated.

Keywords:  laser-induced breakdown spectroscopy (LIBS)      principal component analysis (PCA)      support vector machine (SVM)      lithology identification  
Received:  08 January 2016      Revised:  01 March 2016      Published:  05 June 2016
PACS:  52.25.Kn (Thermodynamics of plasmas)  
  52.50.Jm (Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))  

Project supported by the National Natural Science Foundation of China (Grant No. 11075184), the Knowledge Innovation Program of the Chinese Academy of Sciences (CAS) (Grant No. Y03RC21124), and the CAS President's International Fellowship Initiative Foundation (Grant No. 2015VMA007).

Corresponding Authors:  Feng-Zhong Dong     E-mail:

Cite this article: 

Hong-Xing Yang(杨洪星), Hong-Bo Fu(付洪波), Hua-Dong Wang(王华东), Jun-Wei Jia(贾军伟), Markus W Sigrist, Feng-Zhong Dong(董凤忠) Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis 2016 Chin. Phys. B 25 065201

[1] Cao Y, Liu X L, Xian W D, Sun S H, Sun M Z, Ding P J, Shi Y C, Liu Z Y and Hu B T 2015 Chin. Phys. Lett. 32 035203
[2] Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X and Wang X B 2015 Acta Phys. Sin. 64 075202 (in Chinese)
[3] Zhang Z M, Zhang B, Wu F J, Hong W, Teng J, He S K and Gu Y Q 2014 Acta Phys. Sin. 64 105201 (in Chinese)
[4] Zhang L, Dong Q L, Wang S J, Sheng Z M and Zhang J 2010 Chin. Phys. B 19 078701
[5] Yu J, Ma Q L, Motto-Ros V, Lei W Q, Wang X C and Bai X S 2012 Front. Phys. 7 649
[6] Li Z C, Zheng J, Jiang X H, Wang Z B, Yang D, Zhang H, Li S W, Wang F, Peng X S and Yin Q 2011 Chin. Phys. Lett. 28 125202
[7] Li Z C, Zheng J, Ding Y K, Yin Q, Jiang X H, Li S W, Guo L, Yang D, Wang Z B and Zhang H 2010 Chin. Phys. B 19 125202
[8] Zhao Y, Zhu T, Wei M X, Xiong G, Song T M, Hu Z M, Huang C W, Shang W L, Yang G H and Zhang J Y 2012 Chin. Phys. Lett. 29 085202
[9] Noll R 2012 Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Berlin: Springer) p. 7
[10] Lorenzen C J, Carlhoff C, Hahn U and Jogwich M 1992 J. Anal. Atom. Spectrom. 7 1029
[11] Palanco S and Laserna J 2000 J. Anal. Atom. Spectrom. 15 1321
[12] Kurihara M, Ikeda K, Izawa Y, Deguchi Y and Tarui H 2003 Appl. Opt. 42 6159
[13] Noll R, Mönch I, Klein O and Lamott A 2005 Spectrochim. Acta B 60 1070
[14] Tran M, Smith B W, Hahn D W and Winefoner J D 2001 Appl. Spectrosc. 55 1455
[15] Hettinger B, Hohreiter V, Swingle M and Hahn D W 2006 Appl. Spectrosc. 60 237
[16] Bossu M, Hao Z Q, Baudelet M, Yu J, Zhang Z and Zhang J 2007 Chin. Phys. Lett. 24 3466
[17] Zhu G Z, Guo L B, Hao Z Q, Li C M, Shen M S, Li K H, Li X Y, Liu J G, Zeng X Y and Lu Y F 2015 Acta Phys. Sin. 64 024212 (in Chinese)
[18] Sirven J B, Bousquet B, Canioni L, Sarger L, Tellier S, Potin-Gautier M and Le Hecho I 2006 Anal. Bioanal. Chem. 385 256
[19] Bousquet B, Sirven J B and Canioni L 2007 Spectrochim. Acta B 62 1582
[20] Senesi G, Dell'Aglio M, Gaudiuso R, De Giacomo A, Zaccone C, De Pascale O, Miano T and Capitelli M 2009 Environmental Research 109 413
[21] Morel S, Leone N, Adam P and Amouroux J 2003 Appl. Opt. 42 6184
[22] Corsi M, Cristoforetti G, Hidalgo M, Legnaioli S, Palleschi V, Salvetti A, Tognoni E and Vallebona C 2003 Appl. Opt. 42 6133
[23] Burgio L, Melessanaki K, Doulgeridis M, Clark R J H and Anglos D 2001 Spectrochim. Acta B 56 905
[24] Giakoumaki A, Melessanaki K and Anglos D 2007 Anal. Bioanal. Chem. 387 749
[25] Kaszewska E A, Sylwestrzak M, Marczak J, Skrzeczanowski W, Iwanicka M, Szmit-Naud E, Anglos D and Targowski P 2013 Appl. Spectrosc. 67 960
[26] Wang S H, Li Z L, Sun C L, Li Z W and Men Z W 2014 Acta Phys. Sin. 63 205204 (in Chinese)
[27] Zhang N, Bao W X, Yang J H and Zhu X N 2013 Chin. Phys. B 22 054209
[28] Sirven J B, Salle B, Mauchien P, Lacour J L, Maurice S and Manhes G 2007 J. Anal. Atom. Spectrom. 22 1471
[29] Yueh F Y, Zheng H B, Singh J P and Burgess S 2009 Spectrochim. Acta B 64 1059
[30] Cisewski J, Snyder E, Hannig J and Oudejans L 2012 J. Chemometr. 26 143
[31] De Lucia F C and Gottfried J L 2012 Appl. Opt. 51 B83
[32] Yu Y, Hao Z Q, Li C M, Guo L B, Li K H, Zeng Q D, Li X Y, Ren Z and Zeng X Y 2013 Acta Phys. Sin. 62 215201 (in Chinese)
[33] Tian Y, Wang Z N, Hou H M, Zhai X W, Ci X H and Zheng R E 2012 Spectrosc. Spect. Anal. 32 2027
[34] Wang Q Q, Liu K and Zhao H 2012 Chin. Phys. Lett. 29 044206
[35] Chen X L, Dong F Z, Tao G Q, Li Y J, She M J, Fu H B, Ni Z B and Wang J G 2013 Chin. J. Lasers 40 1215001
[36] Cristoforetti G, De Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V and Omenetto N 2010 Spectrochim. Acta B 65 86
[37] Sun L X, Yu H B, Xin Y and Cong Z B 2010 Spectrosc. Spect. Anal. 30 3186
[38] Stipe C B, Hensley B D, Boersema J L and Buckley S G 2010 Appl. Spectrosc. 64 154
[39] Clegg S M, Sklute E, Dyar M D, Barefield J E and Wiens R C 2009 Spectrochim. Acta B 64 79
[40] Laville S, Sabsabi M and Doucet F R 2007 Spectrochim. Acta B 62 1557
[41] Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A and Tognoni E 2006 Spectrochim. Acta B 61 1294
[42] Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A and Tognoni E 2002 Spectrochim. Acta B 57 339
[43] Cristianini N and Shawe-Taylor J 2000 An introduction to support vector machines and other kernel-based learning methods (Cambridge: Cambridge University Press) p. 93
[44] Liu Y F, Ding Y J, Peng Z M, Huang Y and Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese)
[1] Ignition characteristics of pre-combustion plasma jet igniter
Si-Bo Wang(王思博), Jin-Lu Yu(于锦禄), Jing-Feng Ye(叶景峰), Guo-Hua Li(李国华), Zhao Chen(陈朝), Lu-Yun Jiang(蒋陆昀), Chen-Li Gu(古晨力). Chin. Phys. B, 2019, 28(11): 114702.
[2] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[3] Factors affecting improvement of fluorescence intensity of quartet and doublet state of NO diatomic molecule excited by glow discharge
Ahmed Asaad I Khalil, Reem Al-Tuwirqi, Mohammed A Gondal, Noura Al-Suliman. Chin. Phys. B, 2018, 27(8): 085202.
[4] Particles inside electrolytes with ion-specific interactions, their effective charge distributions and effective interactions
Mingnan Ding(丁茗楠), Yihao Liang(梁逸浩), Xiangjun Xing(邢向军). Chin. Phys. B, 2016, 25(10): 108201.
[5] Experimental study on parameters of dust plasma in SiH4/C2H4/Ar discharges
Wu Jing, Zhang Peng-Yun, Sun Ji-Zhong, Zhang Jian, Ding Zhen-Feng, Wang De-Zhen. Chin. Phys. B, 2008, 17(5): 1848-1853.
[6] Approximate entropy---a new statistic to quantify arc and welding process stability in short-circuiting gas metal arc welding
Cao Biao, Xiang Yuan-Peng, Lü Xiao-Qing, Zeng Min, Huang Shi-Sheng. Chin. Phys. B, 2008, 17(3): 865-877.
[7] Large area planar plasma sustained by surface microwave
Liang Bo, Ou Qiong-Rong, Liang Yi-Zi, Liang Rong-Qing. Chin. Phys. B, 2007, 16(12): 3732-3737.
[8] Two-dimensional numerical research on effects oftitanium target bombarded by TEMP II accelerator
Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Chin. Phys. B, 2006, 15(11): 2682-2687.
[9] Emission spectra simulation of calcium plasmas in non-local thermodynamic equilibrium
Liang Gui-Yun, Bian Xia, Zhao Gang. Chin. Phys. B, 2004, 13(6): 891-897.
[10] Radiation loss in a compound plasma system with high and low temperature regions
Cheng Fa-Yin, Tomonori Takizuka, Nobuhiko Hayashi, Shi Bing-Ren. Chin. Phys. B, 2004, 13(11): 1902-1906.
[11] Characterization of the high-voltage pulsed discharge plasma of ammonia by emission spectroscopy
Yang Wei-Dong, Wang Pei-Nan, Liu Zheng-Ping, Mi Lan, Li Fu-Ming. Chin. Phys. B, 2002, 11(3): 260-265.
[12] L-shell absorption measurement and simulation of x-ray-heated constrained material
Liu Hong-Jie, Zhang Bao-Han, Yang Guo-Hong, Li Jun, Zhang Ji-Yan, Yang Jia-Min, Yan Jun, Li Jia-Ming. Chin. Phys. B, 2002, 11(8): 795-798.
Wu Ze-qing, Zhang Ben-ai, Qiu Yu-bo. Chin. Phys. B, 2000, 9(7): 519-522.
[14] Modulational instability of a weakly relativistic ion acoustic wave in a warm plasma with nonthermal electrons
S. K. El-Labany, M. S. Abdel Krim, S. A. El-Warraki, W. F.El-Taibany. Chin. Phys. B, 2003, 12(7): 759-764.
[15] Structure and phase transition of a two-dimensional dusty plasma
Liu Bin, Liu Yan-Hong, Chen Yan-Ping, Yang Si-Ze, Wang Long. Chin. Phys. B, 2003, 12(7): 765-770.
No Suggested Reading articles found!