Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 064207    DOI: 10.1088/1674-1056/25/6/064207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-broadband modulation instability gain characteristics in As2S3 and As2Se3 chalcogenide glass photonic crystal fiber

He-Lin Wang(王河林), Bin Wu(吴彬), Xiao-Long Wang(王肖隆)
Center for Optics and Optoelectronics Research, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  

Based on the designed As2Se3 and As2S3 chalcogenide glass photonic crystal fiber (PCF) and the scalar nonlinear Schrödinger equation, the effects of pump power and wavelength on modulation instability (MI) gain are comprehensively studied in the abnormal dispersion regime of chalcogenide glass PCF. Owing to high Raman effect and high nonlinearity, ultra-broadband MI gain is obtained in chalcogenide glass PCF. By choosing the appropriate pump parameter, the MI gain bandwidth reaches 2738 nm for the As2Se3 glass PCF in the abnormal-dispersion region, while it is 1961 nm for the As2S3 glass PCF.

Keywords:  ultra-broadband modulation instability      Raman effect      high nonlinearity      chalcogenide glass photonic crystal fiber  
Received:  23 November 2015      Revised:  12 January 2016      Published:  05 June 2016
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Wi (Nonlinear waveguides)  
Fund: 

Project supported by the National Natural Science Fundation of China (Grant No. 11404286), the Natural Science Fundation of Zhejiang Province, China (Grant No. LY15F050010), and the Scientific Research Foundation of Zhejiang University of Technology, China (Grant No. 1401109012408).

Corresponding Authors:  He-Lin Wang     E-mail:  whl982032@163.com

Cite this article: 

He-Lin Wang(王河林), Bin Wu(吴彬), Xiao-Long Wang(王肖隆) Ultra-broadband modulation instability gain characteristics in As2S3 and As2Se3 chalcogenide glass photonic crystal fiber 2016 Chin. Phys. B 25 064207

[1] Sanghera J S and Aggarwal I D 1999 J. Non-Cryst. Solids 256-257 6
[2] Alexander C Judge, Stephen A Dekker, Ravi Pant, Martijn de Sterke C and Benjamin J Eggleton 2010 Opt. Express 18 14960
[3] Van Erps J, Luan F, Pelusi M, Iredale T, Madden S, Choi D Y, Bulla D, Luther-Davies B, Thienpont H and Eggleton B 2010 J. Lightwave Technol. 28 209
[4] Weiblen R J, Docherty A, Hu J and Menyuk C R 2010 Opt. Express 18 26666
[5] Ung B and Skorobogatiy M 2010 Opt. Express 18 8647
[6] Shailendra K Varshney, Kunimasa Saitoh, Kento Iizawa, Yukihiro Tsuchida, Masanori Koshiba and Sinha R K 2008 Opt. Lett. 33 2431
[7] Ben Salem A, Cherif R and Zghal M 2011 PIERS Proceedings, Marrakesh, Morocco, March 20-23, Russia
[8] Bhawana Dabas and Sinha R K 2010 Opt. Commun. 283 1331
[9] Gopinath J, Soljacic M, Ippen E, Fuflyigin V, King W and Shurgalin M 2004 J. Appl. Phys. 96 6931
[10] Wang H L, Yang A J and Leng Y X 2014 Laser Physics 24 035101
[11] Wang H L, Yang A J and Leng Y X 2013 Laser Physics 23 075102
[12] Wang H L, Yang A J and Leng Y X 2013 Chin. Phys. B 22 074208
[13] Wang H L, Leng Y X and Xu Z Z 2009 Chin. Phys. B 18 1
[14] Wu Y 2013 Laser Phys. Lett. 10 095107
[15] Jonathan Hu, Curtis R Menyuk and Brandon Shaw L 2010 Opt. Lett. 35 2907-2909
[16] Yan Z, Wen J G, Zhao C J, Wang W L and Wang Y L 2015 International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)
[17] Sourabh Roy and Partha Roy Chaudhuri 2015 Opt. Commun. 282 3448
[18] Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Spalter S, Slusher R E and Cheong S W 2000 Opt. Lett. 25 254
[1] Mode decoupling in solid state ring laser based on stimulated Raman effect in polar crystals
Luo Zhang, Yuan Xiao-Dong, Ye Wei-Min, Zeng Chun, Ji Jia-Rong. Chin. Phys. B, 2011, 20(2): 024205.
No Suggested Reading articles found!