Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044207    DOI: 10.1088/1674-1056/24/4/044207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Propagation of Gaussian beams family through a Kerr-type left-handed metamaterial

A. Keshavarz, M. Naseri
Department of Physics, Shiraz University of Technology, Shiraz, Iran
Abstract  In this paper the propagation of elegant Hermite-cosh-Gaussian, elegant Laguerre Gaussian, and Bessel Gaussian beams through a Kerr left-handed metamaterial (LHM) slab have been studied. A split-step Fourier method is used to investigate the propagation of laser beams through this media. Numerical simulation shows that Gaussian beams have different focusing behaviors in a Kerr LHM slab with positive or negative nonlinearity. Beam focusing happens in slabs with positive nonlinearity and not in slabs with negative nonlinearity; however, negative nonlinearity is required for a Kerr LHM slab to act like a lens. Additionally, the focusing properties of beams can be controlled by controlling the thickness of the slab or the input power of the incident beam. A multilayer structure is also proposed to have beam focusing by thinner slabs and passing longer distances.
Keywords:  Kerr-type left-handed metamaterial      Gaussian beams family      split-step Fourier method  
Received:  23 June 2014      Revised:  09 August 2014      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Corresponding Authors:  A. Keshavarz     E-mail:  Keshavarz@sutech.ac.ir

Cite this article: 

A. Keshavarz, M. Naseri Propagation of Gaussian beams family through a Kerr-type left-handed metamaterial 2015 Chin. Phys. B 24 044207

[1] Veselago V G 1968 Soviet Physics Uspekhi 10 509
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Shelby R A, Smith D R and S Schultz 2001 Science 292 77
[4] Smith D R, Pendry J R and Wiltshier M C K 2004 Science 305 788
[5] Guo B 2013 Chin. Phys. Lett. 30 105201
[6] Ye Y H and Zhong M 2014 Chin. Phys. B 23 024101
[7] Wang F M, Liu H, Li T, Dong Z G, Zhu S N and Zhang X 2007 Phys. Rev. E 75 016604
[8] Ye Y H and Zhang J Y 2005 Opt. Lett. 30 1521
[9] Ortuno R, Garcia-Meca C, Rodriguez-Fortuno F J, Marti J and Martinez A 2009 Phys. Rev. B 79 075425
[10] Chen J B J, Grzegorczyk T M, Wu B I and Kong J A 2005 J. Appl. Phys. 98 094905
[11] Ziolkowski R W and Kipple A D 2003 IEEE Trans. Anten. Progag. 51 2626
[12] Ziolkowski R W and Erentok A 2006 IEEE Trans. Commun. 54 7
[13] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science. 314 977
[14] Lu L, Qu S B, Shi H Y, Zhang A X, Xia S, Xu Z and Zhang J Q 2014 Acta Phys. Sin. 63 028103 (in Chinese)
[15] Qin M M, Ji W, Feng Y Y and Feng W 2014 Chin. Phys. B 23 028103
[16] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2014 Chin. Phys. B 23 017802
[17] Lu L, Qu S B, Su X, Shang Y B, Zhang J Q and Bai P 2013 Acta Phys. Sin. 62 208103 (in Chinese)
[18] Xu R W, Guo L X, Fan T Q 2013 Chin. Phys. Lett. 30 124101
[19] Zharova N A, Shadrivov I V, Zharov A A and Kivshar Y S 2005 Opt. Express 13 1291
[20] Tian H, Liu H T and Cheng H F 2014 Chin. Phys. B 23 025201
[21] Zharov A A, Shadrivov I V and Kivshar Yu S 2003 Phys. Rev. Lett. 91 037401
[22] Lapine M, Gorkunov M and Ringhofer K H 2003 Phys. Rev. Lett. 67 065601
[23] Hu Y, Wen S, Zhuo H, You K and Fan D 2008 Opt. Express 16 7
[24] Wen S, Xiang Y, Dai X, Tang Z, Su W and Fan D 2007 Phys. Rev. A 75 3
[25] Taha T R and Ablowitz M J 1984 J. Comput. Phys. 55 20330
[26] Tovar A A and Casperson L W 1998 J. Opt. Soc. Am. A 15 2425
[27] Saghafi S and Sheppard C J R 1998 J. Mod. Opt. 45 1999
[28] Gori F, Guattari G and Padovani C 1987 Opt. Commun. 64 491
[1] Evolution of dark solitons in the presence of Ramangain and self-steepening effect
Yu Yu (于宇), Jia Wei-Guo (贾维国), Yan Qing (闫青), Menke Neimule (门克内木乐), Zhang Jun-Ping (张俊萍). Chin. Phys. B, 2015, 24(8): 084210.
[2] Adaptive split-step Fourier method for simulating ultrashort laser pulse propagation in photonic crystal fibres
Li Shu-Guang (李曙光), Xing Guang-Long (邢光龙), Zhou Gui-Yao (周桂耀), Han Ying (韩颖), Hou Lan-Tian (侯蓝田), Hu Ming-Lie (胡明列), Li Yan-Feng (栗岩锋), Wang Qing-Yue (王清月). Chin. Phys. B, 2006, 15(2): 437-443.
No Suggested Reading articles found!