Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 089501    DOI: 10.1088/1674-1056/23/8/089501

The mass limit of white dwarfs with strong magnetic fields in general relativity

Wen De-Hua, Liu He-Lei, Zhang Xiang-Dong
School of Sciences, South China University of Technology, Guangzhou 510641, China
Abstract  Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58 M) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M=2.48 M with BD=391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account.
Keywords:  strongly magnetize field      white dwarf      general relativity effect  
Received:  16 December 2013      Revised:  17 February 2014      Published:  15 August 2014
PACS:  95.30.Sf (Relativity and gravitation)  
  51.30.+i (Thermodynamic properties, equations of state)  
  71.70.Di (Landau levels)  
  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10947023, 11275073, and 11305063) and the Fundamental Research Funds for the Central University of China (Grant Nos. 2014ZG0036 and 2013ZM107). This project was sponsored by the Science Research Foundation for Returned Overseas Chinese Scholars, SEM, and has made use of NASA's Astrophysics Data System.
Corresponding Authors:  Wen De-Hua     E-mail:

Cite this article: 

Wen De-Hua, Liu He-Lei, Zhang Xiang-Dong The mass limit of white dwarfs with strong magnetic fields in general relativity 2014 Chin. Phys. B 23 089501

[1] Chandrasekhar S 1935 MNRAS 95 207
[2] Philips M M 1993 ApJ 413 L105
[3] Goldhaber G, Groom D E and Kim A 2001 ApJ 558 359
[4] Riess A G, Filippenko A V and Challis P 1998 Astron. J. 116 1009
[5] Perlmutter S, Aldering G and Goldhaber G 1999 ApJ 517 565
[6] Howell D A, Sullivan M and Nugent P E 2006 Nature 443 308
[7] Scalzo R A, Aldering G and Antilogus P 2010 ApJ 713 1073
[8] Das U and Mukhopadhyay B 2012 Phys. Rev. D 86 042001
[9] Wen D H, Li B A and Chen L W 2009 Phys. Rev. Lett. 103 211102
[10] Demorest P B, Pennucci T, Ransom S M, Roberts M S E and Hessels J W T 2010 Nature 467 1081
[11] Antoniadis J, Freire P C C and Wex N 2013 Science 340 1233232
[12] Hachisu I, Kato M, Saio H and Nomoto H 2012 ApJ 744 69
[13] Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102
[14] Das U and Mukhopadhyay B 2012 Int. J. Mod. Phys. D 21 1242001
[15] Weinberg S 1972 Gravitation and Cosmology (New York: John Wiley)
[16] Tolman R C 1939 Phys. Rev. 55 364
[17] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374
[18] Wen D H and Zhou Y 2013 Chin. Phys. B 22 080401
[19] Wen D H and Chen W 2011 Chin. Phys. B 20 029701
[20] Wen D H 2010 Chin. Phys. Lett. 27 010401
[21] Lai D and Shapiro S L 1991 ApJ 383 745
[22] Kundu A and Mukhopadhyay B 2012 Mod. Phys. Lett. A 27 1250084
[23] Chamel N, Fantina A F and Davis P J 2013 Phys. Rev. D 88 081301(R)
[24] Coelho J G, Marinho R M Jr, Malheiro M, Negreiros R, Cáceres D L, Rueda J A and Ruffini R 2013 arXiv: 1306.4658
[1] Gravitation induced shrinkage of Mercury’s orbit
Moxian Qian(钱莫闲), Xibin Li(李喜彬), and Yongjun Cao(曹永军)†. Chin. Phys. B, 2020, 29(10): 109501.
[2] Circular geodesics and accretion disk in the spacetime of a black hole including global monopole
Sun Xu-Dong, Chen Ju-Hua, Wang Yong-Jiu. Chin. Phys. B, 2014, 23(6): 060401.
[3] Solution of Dirac equation around a charged rotating black hole
Lü Yan, Hua Wei. Chin. Phys. B, 2014, 23(4): 040403.
[4] Growth of linear matter perturbations and current observational constraints
Fu Xiang-Yun, Wu Pu-Xun, Yu Hong-Wei. Chin. Phys. B, 2010, 19(7): 079801.
[5] The 2.7 K black-body radiation background reference frame
López-Carrera Benjamín, Rosales Marco Antonio, Ares de Parga Gonzalo. Chin. Phys. B, 2010, 19(4): 040203.
[6] New agegraphic dark energy as a rolling tachyon
Cui Jing-Lei, Zhang Li, Zhang Jing-Fei, Zhang Xin. Chin. Phys. B, 2010, 19(1): 019802.
[7] A cosmological model with negative energy photons
Qin Yi-Ping. Chin. Phys. B, 2010, 19(1): 019803.
[8] Some characteristics of three exact solutions of Einstein equations minimally coupled to a Quintessence field
Zhou Xiao-Hua. Chin. Phys. B, 2009, 18(8): 3115-3121.
[9] Effect of pressure grads on convection in inner core of type II supernova
Liu Men-Quan, Luo Zhi-Quan. Chin. Phys. B, 2008, 17(10): 3917-3921.
[10] Hawking radiation from Kerr--Newman de Sitter black hole via anomalies
Lin Kai, Yang Shu-Zheng, Zeng Xiao-Xiong. Chin. Phys. B, 2008, 17(8): 2804-2810.
[11] Modification of gravitational redshift of x-ray burst produced by pulsar surface magnetoplasma
Zhu Jun, Ji Pei-Yong. Chin. Phys. B, 2008, 17(1): 356-361.
[12] Gravitational frequency-shift and deflection of light by quintessence
Chen Ju-Hua, Wang Yong-Jiu. Chin. Phys. B, 2007, 16(11): 3212-3215.
[13] Improved calculation of relic gravitational waves
Zhao Wen. Chin. Phys. B, 2007, 16(10): 2894-2902.
[14] The parameters of binary black hole system in PKS 1510-089
Li Juan, Fan Jun-Hui, Yuan Yu-Hai. Chin. Phys. B, 2007, 16(3): 876-880.
[15] Relationship between width of pulses and Lorentz factor expected from the light curve of fireball sources
Qin Yi-Ping, Zhang Fu-Wen. Chin. Phys. B, 2005, 14(11): 2276-2286.
No Suggested Reading articles found!