Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044203    DOI: 10.1088/1674-1056/23/4/044203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Output three-mode entanglement via coherently prepared inverted Y-type atoms

Wang Fei, Qiu Jing
College of Science, China Three Gorges University, Yichang 443002, China
Abstract  In this paper, the output quantum correlations of three fields interacting with inverted Y-type atoms inside a three-mode cavity are investigated. By numerically calculating the stationary noise spectra of the fields, we show that it is possible to generate the genuine tripartite continuous variable entanglement outside the cavity by coherently preparing the atoms in a superposition of the upper excited state and two ground states initially. Our numerical results demonstrate that both zero frequency entanglement and sideband frequency entanglement can be obtained under different initial coherent conditions. In addition, we investigate the thermal fluctuation effects on the quantum entanglement. It is found out that the entanglement occurring in a high frequency regime is more robust against thermal noise than the zero frequency entanglement, which may be useful for quantum communication.
Keywords:  tripartite entanglement      correlated spontaneous emission laser      inverted Y-type atom  
Received:  23 July 2013      Revised:  31 August 2013      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 1137418 and 11104163) and the Science Foundation of Three Gorges University, China (Grant No. KJ2011B019).
Corresponding Authors:  Wang Fei     E-mail:  feiwang202@163.com
About author:  42.50.Dv; 03.65.Ud; 42.50.Lc; 03.67.Bg

Cite this article: 

Wang Fei, Qiu Jing Output three-mode entanglement via coherently prepared inverted Y-type atoms 2014 Chin. Phys. B 23 044203

[1] Arimondo E 1996 Progress in Optics (Amsterdam: Elsevier Science)
[2] Harris S E 1997 Phys. Today 50 36
[3] Marangos J P 1998 J. Mod. Opt. 45 471
[4] Lukin M D and Imamoglu A 2001 Nature 413 273
[5] Lukin M D 2003 Rev. Mod. Phys. 75 457
[6] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[7] Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
[8] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
[9] Yang H, Yang D, Zhang M, Fang B, Zhang Y and Wu J H 2012 Chin. Phys. B 21 114207
[10] Imamoglu A 1989 Phys. Rev. A 40 2835
[11] Zhu S Y and Fill E E 1990 Phys. Rev. A 42 5684
[12] Scully M O 1992 Phys. Rep. 219 191
[13] Mandel P 1993 Contemp. Phys. 34 235
[14] Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
[15] Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
[16] Keitel C H 1999 Phys. Rev. Lett. 83 1307
[17] Hu X M, Shi W X, Xu Q, Guo H J and Li J Y 2006 Phys. Lett. A 352 543
[18] Braunstein S L and van Look P 2005 Rev. Mod. Phys. 77 513
[19] Li G X, Tan H T and Macovei M 2007 Phys. Rev. A 76 053827
[20] Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 69 063803
[21] Pielawa S, Morigi G, Vitali D and Davidovich L 2007 Phys. Rev. Lett. 98 240401
[22] Cheng G L, Hu X M, Zhong W X and Li Q 2008 Phys. Rev. A 78 33811
[23] Shi W X, Hu X M, Li J Y and Wang F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 155506
[24] Chen G L, Chen A X and Zhong W X 2011 Opt. Commun. 284 4028
[25] Morigi G, Eschner J, Mancini S and Vitali D 2006 Phys. Rev. Lett. 96 023601
[26] Lü X Y, Liu J B, Si L G and Yang X X 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035501
[27] Kiffner M, Zubairy M S, Evers J and Keitel C H 2007 Phys. Rev. A 75 033816
[28] Qamar S, Ghafoor F, Hillery M and Zubairy M S 2008 Phys. Rev. A 77 062308
[29] Qamar S, Al-Amri M, Qamar S and Zubairy M S 2009 Phys. Rev. A 80 033818
[30] Hao X Y, Lü X Y, Liu L and Yang W X 2009 J. Phys. B: At. Mol. Opt. Phys. 42 105502
[31] Liang X, Hu X M and He C 2012 Phys. Rev. A 85 032329
[32] Li X and Hu X M 2013 Laser Phys. Lett. 10 075202
[33] Zhang X, Hu X M, Zhang X H and Wang F 2010 Chin. Phys. B 19 124204
[34] Dantan A, Cviklinski J, Giacobino E and Pinard M 2006 Phys. Rev. Lett. 97 023605
[35] Wang F, Hu X M, Shi W X and Zhu Y Y 2010 Phys. Rev. A 81 033836
[36] Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
[37] Tan H T, Zhu S Y and Zubairy M S 2005 Phys. Rev. A 72 022305
[38] Zhou L, Xiong H and Zubairy M S 2006 Phys. Rev. A 74 022321
[39] Scully M O and Zubairy M S 1987 Phys. Rev. A 35 752
[40] Tesfa S 2006 Phys. Rev. A 74 043816
[41] Tesfa S 2008 Phys. Rev. A 77 013815
[42] Tesfa S 2009 Phys. Rev. A 79 033810
[43] Shi W X, Hu X M and Wang F 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165506
[44] Lü X Y, Huang P, Yang W X and Yang X X 2009 Phys. Rev. A 80 032305
[45] Song P J, Hao X Y, Huang P and Zhan Z M 2010 Opt. Commun. 283 2982
[46] Jin L X, Lü X Y, Song P J and Yang X X 2010 Chin. Phys. Lett. 27 040310
[47] Tesfa S 2011 Phys. Rev. A 83 052322
[48] Drummond P D and Gardiner C W 1980 J. Phys. A: Math. Gen. 13 2353
[49] Drummond P D and Walls D F 1981 Phys. Rev. A 23 2563
[50] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin: Springer)
[51] van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315
[52] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: Wiley)
[53] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[54] Agarwal G S and Harshawardhan 1996 Phys. Rev. Lett. 77 1039
[55] Yan M, Rickey E G and Zhu Y F 2001 Phys. Rev. A 64 043807
[1] Quantum frequency doubling based on tripartite entanglement with cavities
Juan Guo(郭娟), Zhi-Feng Wei(魏志峰), Su-Ying Zhang(张素英). Chin. Phys. B, 2016, 25(2): 020302.
No Suggested Reading articles found!