Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024204    DOI: 10.1088/1674-1056/23/2/024204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of water and ice clouds on cloud microphysical budget:An equilibrium modeling study

Gao Shou-Ting (高守亭)a, Li Xiao-Fan (李小凡)b, Zhou Yu-Shu (周玉淑)a
a Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
b Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Abstract  The effects of water and ice clouds on the cloud microphysical budget associated with rainfall are investigated through the analysis of grid-scale data from a series of two-dimensional cloud-resolving model equilibrium sensitivity simulations. The model is imposed without large-scale vertical velocity. In the control experiment, the contribution from rainfall (cM) associated with net evaporation and hydrometeor loss/convergence is about 29% of that from the rainfall (Cm) associated with net condensation and hydrometeor gain/divergence and about 39% of that from the rainfall (CM) associated with net condensation and hydrometeor loss/convergence. The exclusion of ice clouds enhances rainfall contribution of CM, whereas it reduces rainfall contributions of Cm and cM. The removal of radiative effects of water clouds increases rainfall contribution of CM, barely changes rainfall contribution of Cm and reduces the rainfall contribution of cM in the presence of the radiative effects of ice clouds. Elimination of the radiative effects of water clouds reduces the rainfall contributions of CM and Cm, whereas it increases the rainfall contribution of cM in the absence of the radiative effects of ice clouds.
Keywords:  effects of water and ice clouds      cloud budget      net condensation      hydrometeor change/convergence  
Received:  25 March 2013      Revised:  19 April 2013      Accepted manuscript online: 
PACS:  42.68.Ge (Effects of clouds and water; ice crystal phenomena)  
  92.60.N- (Cloud physics and chemistry)  
  92.60.jf (Precipitation)  
  92.60.Wc (Weather analysis and prediction)  
Fund: Project supported by the National Key Basic Research and Development Project of China (Grant No. 2012CB417201), the National Natural Sciences Foundation of China (Grant Nos. 40930950 41075043, 41275065, and 41075044), and the 985 Program of Zhejiang University (Grant No. 188020+193432602/215).
Corresponding Authors:  Zhou Yu-Shu     E-mail:  zys@mail.iap.ac.cn
About author:  42.68.Ge; 92.60.N-; 92.60.jf; 92.60.Wc

Cite this article: 

Gao Shou-Ting (高守亭), Li Xiao-Fan (李小凡), Zhou Yu-Shu (周玉淑) Effects of water and ice clouds on cloud microphysical budget:An equilibrium modeling study 2014 Chin. Phys. B 23 024204

[1] Li X, Sui C H and Lau K M 2002 Mon. Wea. Rev. 130 2481
[2] Houghton H G 1968 J. Appl. Meteor. 7 851
[3] Churchill D D and Houze R A 1984 J. Atmos. Sci. 41 933
[4] Caniaux G, Redelsperger J L and Lafore J P 1994 J. Atmos. Sci. 51 2046
[5] Steiner M, Houze R A and Yuter S E 1995 J. Appl. Meteor. 34 1978
[6] Tao W K, Simpson J, Sui C H, Ferrier B, Lang S, Scala J, Chou M D and Pickering K 1993 J. Atmos. Sci. 50 673
[7] Sui C H, Lau K M, Tao W K and Simpson J 1994 J. Atmos. Sci. 51 711
[8] Cui X and Li X 2006 J. Geophys. Res. 111 D17112
[9] Gao S, Cui X, Zhou Y and Li X 2005 J. Geophys. Res. 110 D10202
[10] Shen X, Wang Y, Zhang N and Li X 2010 J. Geophys. Res. 115 D24205
[11] Li X and Gao S 2011 Precipitation Modeling and Quantitative Analysis (Berlin: Springer Press)
[12] Gao S, Zhou Y and Li X 2007 J. Atmos. Sci. 64 656
[13] Ping F, Luo Z and Li X 2007 Mon. Wea. Rev. 135 2794
[14] Gao S 2008 J. Geophys. Res. 113 D03108, doi: 10.1029/2007JD009177
[15] Gao S and Li X 2008 Cloud-resolving Modeling of Convective Processes (Berlin: Springer Press)
[16] Zhou Y and Li X 2011 Adv. Atmos. Sci. 28 1099
[17] Li X, Shen X and Liu J 2011 Atmos. Res. 102 444
[18] Soong S T and Ogura Y 1980 J. Atmos. Sci. 37 2035
[19] Soong S T and Tao W K 1980 J. Atmos. Sci. 37 2016
[20] Tao W K and Simpson J 1993 Terr. Atmos. Oceanic Sci. 4 35
[21] Li X, Sui C H, Lau K M and Chou M D 1999 J. Atmos. Sci. 56 3028
[22] Sui C H, Li X and Lau K M 1998 J. Atmos. Sci. 55 2345
[23] Lin Y L, Farley R D and Orville H D 1983 J. Climate Appl. Meteor. 22 1065
[24] Rutledge S A and Hobbs P V 1983 J. Atmos. Sci. 40 1185
[25] Rutledge S A and Hobbs P V 1984 J. Atmos. Sci. 41 2949
[26] Tao W K, Simpson J and McCumber M 1989 Mon. Wea. Rev. 117 231
[27] Krueger S K, Fu Q, Liou K N and Chin H N S 1995 J. Appl. Meteor. 34 281
[28] Chou M D, Suarez M J, Ho C H, Yan M M H and Lee K T 1998 J. Atmos. Sci. 55 201
[29] Chou M D, Kratz D P and Ridgway W 1991 J. Climate 4 424
[30] Chou M D and Suarez M J 1994 NASA Tech. Memo. 3 85
[31] Sui C H, Lau K M, Takayabu Y N and D Short 1997 J. Atmos. Sci. 54 639
[1] Electromagnetic scattering of charged particles in a strong wind-blown sand electric field
Xingcai Li(李兴财), Xuan Gao(高璇), Juan Wang(王娟). Chin. Phys. B, 2019, 28(3): 034208.
[2] Precipitation efficiency and its relationship to physical factors
Zhou Yu-Shu (周玉淑), Li Xiao-Fan (李小凡), Gao Shou-Ting (高守亭). Chin. Phys. B, 2014, 23(6): 064210.
[3] Effects of clouds, sea surface temperature, and its diurnal variation on precipitation efficiency
Shen Xin-Yong (沈新勇), Qing Tao (庆涛), Li Xiao-Fan (李小凡). Chin. Phys. B, 2013, 22(9): 094213.
[4] Effects of sea surface temperature, cloud radiative and microphysical processes, and diurnal variations on rainfall in equilibrium cloud-resolving model simulations
Jiang Zhe(蒋哲), Li Xiao-Fan(李小凡), Zhou Yu-Shu(周玉淑), and Gao Shou-Ting(高守亭) . Chin. Phys. B, 2012, 21(5): 054215.
[5] ACOUSTIC INVERSE METHOD FOR MEASURING THE SIZE-DISTRIBUTION OF THE DROPS AND THE MOISTURE CONTENT IN WATER (CLOUD) FOG
Qian Zu-wen (钱祖文), Shao Dao-yuan (邵道远), Li Xian-hui (李贤徽), Wang De-zhao (汪德昭). Chin. Phys. B, 1999, 8(1): 27-31.
No Suggested Reading articles found!