Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080201    DOI: 10.1088/1674-1056/21/8/080201
GENERAL   Next  

A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system

Cui Jin-Chaoa b, Han Yue-Lina, Jia Li-Quna
a School of Science, Jiangnan University, Wuxi 214122, China;
b School of Astronautics, Beijing Institute of Technology, Beijing 100081, China
Abstract  A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of groups, from the definition and the criterion of Mei symmetry, a type of structural equation and conserved quantity for the system by proposition 2 are obtained, and the inferences in two special cases are given. Finally, an example is given to illustrate the application of the results.
Keywords:  Nielsen equation      Mei symmetry      structural equation      conserved quantity     
Received:  05 January 2012      Published:  01 July 2012
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032).
Corresponding Authors:  Jia Li-Qun     E-mail:  jlq0000@163.com

Cite this article: 

Cui Jin-Chao, Han Yue-Lin, Jia Li-Qun A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system 2012 Chin. Phys. B 21 080201

[1] Bloch A M, Baillieul J, Crouch P and Marsden J 2003 Nonholonomic Mechanics and Control (London: Springer)
[2] Vagner V V 1941 Trndy Sem. Vektor. Tenzor. Anal. 5 173 (in Russian)
[3] Etayo F, Santamaria R and Vacaru S I 2005 J. Math. Phys. 46 032901
[4] Bloch A M, Krishnaprasad P S, Marsden J E and Murray R M 1996 Arch. Rat. Mech. Anal. 136 21
[5] Mei F X 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)
[6] Luo S K 2007 Acta Phys. Sin. 56 5580 (in Chinese)
[7] Cai J L 2010 Chin. J. Phys. 48 728
[8] Jiang W A, Li L, Li Z J and Luo S K 2012 Nonlinear Dynam. 67 1075
[9] Jia L Q, Xie Y L, Zhang Y Y and Yang X F 2010 Chin. Phys. B 19 110301
[10] Zhang Y and Mei F X 2000 Chin. Sci. Bull. 45 135
[11] Cai J L 2010 Int. J. Theor. Phys. 49 201
[12] Cui J C, Jia L Q and Zhang Y Y 2009 Commun. Theor. Phys. 52 7
[13] Jiang W A and Luo S K 2012 Nonlinear Dynam. 67 475
[14] Cai J L 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[15] Li Z J, Jiang W A and Luo S K 2012 Nonlinear Dynam. 67 445
[16] Yang X F, Sun X T, Wang X X, Zhang M L and Jia L Q 2011 Acta Phys. Sin. 60 111101 (in Chinese)
[17] Cui J C, Zhang Y Y and Jia L Q 2009 Chin. Phys. B 18 1731
[18] Jiang W A and Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese)
[19] Wang S Y and Mei F X 2001 Chin. Phys. 10 373
[20] Fang J H, Xue Q Z and Zhao S Q 2002 Acta Phys. Sin. 51 2183 (in Chinese)
[21] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese)
[22] Xie Y L, Jia L Q and Yang X F 2011 Acta Phys. Sin. 60 030201 (in Chinese)
[23] Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese)
[24] Xu X J, Mei F X and Qin M C 2004 Acta Phys. Sin. 53 4021 (in Chinese)
[1] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[2] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[3] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li, Chen Li-Qun, Fu Jing-Li, Wu Jing-He. Chin. Phys. B, 2014, 23(7): 070201.
[4] Impact of user influence on information multi-step communication in micro-blog
Wu Yue, Hu Yong, He Xiao-Hai, Deng Ken. Chin. Phys. B, 2014, 23(6): 060101.
[5] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin, Zhang Yi. Chin. Phys. B, 2014, 23(5): 054501.
[6] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan, Zhang Yi. Chin. Phys. B, 2014, 23(12): 124502.
[7] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi, Chen Ben-Yong, Fu Jing-Li. Chin. Phys. B, 2014, 23(11): 110201.
[8] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling, Chen Li-Qun, Fu Jing-Li, Hong Fang-Yu. Chin. Phys. B, 2013, 22(3): 030201.
[9] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong, Xu Xue-Jun. Chin. Phys. B, 2012, 21(9): 094501.
[10] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li, Chen Li-Qun. Chin. Phys. B, 2012, 21(7): 070202.
[11] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng, Xue Yun, Liu Yu-Lu. Chin. Phys. B, 2012, 21(7): 070203.
[12] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun, Zhang Mei-Ling, Wang Xiao-Xiao, Han Yue-Lin. Chin. Phys. B, 2012, 21(7): 070204.
[13] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin, Fang Jian-Hui, Zhang Wei-Wei. Chin. Phys. B, 2012, 21(7): 070208.
[14] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin, Mei Feng-Xiang. Chin. Phys. B, 2012, 21(6): 064501.
[15] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao,Sun Xian-Ting,Zhang Mei-Ling,Han Yue-Lin,Jia Li-Qun. Chin. Phys. B, 2012, 21(5): 050201.
No Suggested Reading articles found!