Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090503    DOI: 10.1088/1674-1056/20/9/090503
GENERAL Prev   Next  

Integrated systemic inflammatory response syndrome epidemic model in scale-free networks

Cai Shao-Hong(蔡绍洪)a)† , Zhang Da-Min(张达敏)b), Gong Guang-Wu(龚光武)b), and Guo Chang-Rui(郭长睿)a)
a School of Informatics, Guizhou College of Finance and Economics, Guiyang 550004, China; b School of Computer Science and Information, Guizhou University, Guiyang 550025, China
Abstract  Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.
Keywords:  scale-free networks      systemic inflammatory response syndrome model      analog simulation  
Received:  11 October 2010      Revised:  30 March 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  02.60.Cb (Numerical simulation; solution of equations)  

Cite this article: 

Cai Shao-Hong(蔡绍洪), Zhang Da-Min(张达敏), Gong Guang-Wu(龚光武), and Guo Chang-Rui(郭长睿) Integrated systemic inflammatory response syndrome epidemic model in scale-free networks 2011 Chin. Phys. B 20 090503

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barab'asi A L and Albert R 1999 Science 286 509
[3] Albert R and Barab'asi L 2002 Rev. Mod. Phys. 74 47
[4] Jeong H, Mason S P, Barab'asi A L and Oltvai Z N 2001 Nature 411 41
[5] Broder A, CLaffy K C and Maghoul F 2000 Proceedings of the 9th WWW Conference Computer Networks 33 309
[6] Newman M E J 2001 Phys. Rev. E 64 016131
[7] Wu J S and Di Z R 2004 Prog. Phys. 24 18
[8] Fang J Q, Wang X F, Zheng Z G, Bi Q, Di Z R and Li X 2007 Prog. Phys. 27 239
[9] Fang J Q, Wang X F, Zheng Z G, Bi Q, Di Z R and Li X 2007 Prog. Phys. 27 361
[10] Wu L and Zhu S 2009 Eur. Phys. J. D 54 87
[11] Wu D, Zhu S Q and Luo X Q 2009 Eur. Phys. Lett. 86 50002
[12] Wu L, Zhu S Q and Luo X Q 2010 Chaos 20 033113
[13] Wu L, Zhu S Q Luo X Q and Wu D 2010 Phys. Rev. E 81 061118
[14] Wang X H, Jiao L C and Wu J S 2010 Chin. Phys. B 19 020501
[15] Guan J Y, Wu Z X, Huang Z G and Wang Y H 2010 Chin. Phys. B 19 020203
[16] Barth'elemy M, Barrat A, Pastor-Satorras R and Vespignani A 2004 Phys. Rev. Lett. 92 178701
[17] Barth'elemy M, Barrat A, Pastor-Satorras R and Vespignani A 2005 J. Theor. Biol. 235 275
[18] Kuperman M and Abramson G 2001 Phys. Rev. Lett. 86 2902
[19] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[20] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117
[21] Newman M E J 2002 Phys. Rev. E 66 06128
[22] Lloyd A L and May R M 2001 Science 292 1316
[23] Moreno Y, Pastor-Satorras R and Vespignani A 2002 Eur. Phys. J. B 26 521
[24] Gallos L K and Argyrakis P 2003 Physica A 330 117
[25] Madar N, Kalisky T, Cohen R, Avraham D and Havlin S 2004 Eur. Phys. J. B 38 269
[26] Wang Y Q and Jiang G P 2010 Acta Phys. Sin. 59 6734 (in Chinese)
[27] Wang Y Q and Jiang G P 2010 Acta Phys. Sin. 59 6725 (in Chinese)
[28] Xia C Y, Liu Z X, Chen Z Q and Yuan Z Z 2008 Control and Decision 23 468
[29] Liu Z R, Yan J R, Zhang J G and Wang L 2006 Chin. Phys. Lett. 23 1343
[30] Lin G J, Jia X and Ouyang Q 2003 J. Peking Univ. (Health Sciences) 35 66
[31] Zhang D M and Cai S H 2009 Proceedings of the 5th International Conference on Information Assurance and Security 2 556
[32] Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 035108
[33] Li G Z and Shi D H 2006 Prog. Nat. Sci. 65 508
[1] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[2] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[3] Generalized minimum information path routing strategy on scale-free networks
Zhou Si-Yuan(周思源), Wang Kai(王开), Zhang Yi-Feng(张毅锋) Pei Wen-Jiang(裴文江) Pu Cun-Lai(濮存来), and Li Wei(李微) . Chin. Phys. B, 2011, 20(8): 080501.
[4] Degree and connectivity of the Internet's scale-free topology
Zhang Lian-Ming(张连明), Deng Xiao-Heng(邓晓衡), Yu Jian-Ping(余建平), and Wu Xiang-Sheng(伍祥生) . Chin. Phys. B, 2011, 20(4): 048902.
[5] Poor–rich demarcation of Matthew effect on scale-free systems and its application
Yan Dong(闫栋), Dong Ming(董明), Abdelaziz Bouras, and Yu Sui-Ran(于随然) . Chin. Phys. B, 2011, 20(4): 040205.
[6] Mobile user forecast and power-law acceleration invariance of scale-free networks
Guo Jin-Li(郭进利), Guo Zhao-Hua(郭曌华), and Liu Xue-Jiao(刘雪娇) . Chin. Phys. B, 2011, 20(11): 118902.
[7] Adaptive local routing strategy on a scale-free network
Liu Feng(刘锋) Zhao Han(赵寒), Li Ming(李明), Ren Feng-Yuan(任丰原), and Zhu Yan-Bo(朱衍波). Chin. Phys. B, 2010, 19(4): 040513.
[8] Convergence speed of consensus problems over undirected scale-free networks
Sun Wei(孙巍) and Dou Li-Hua(窦丽华). Chin. Phys. B, 2010, 19(12): 120513.
[9] Modelling the spread of sexually transmitted diseases on scale-free networks
Liu Mao-Xing(刘茂省) and Ruan Jiong(阮炯). Chin. Phys. B, 2009, 18(6): 2115-2120.
[10] Improving consensual performance of multi-agent systems in weighted scale-free networks
Qi Wei(祁伟), Xu Xin-Jian(许新建), and Wang Ying-Hai(汪映海). Chin. Phys. B, 2009, 18(10): 4217-4221.
[11] Normalized entropy of rank distribution: a novel measure of heterogeneity of complex networks
Wu Jun(吴俊), Tan Yue-Jin(谭跃进), Deng Hong-Zhong(邓宏钟), and Zhu Da-Zhi(朱大智). Chin. Phys. B, 2007, 16(6): 1576-1580.
No Suggested Reading articles found!