Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 074701    DOI: 10.1088/1674-1056/20/7/074701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analytical investigation on mean and turbulent velocity fields of a plane jet

Mi Jian-Chun, Feng Bao-Ping
Department of Energy & Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
Abstract  This paper analyses the downstream developments of the mean and the turbulent velocity fields of a plane jet. Based on the conservation of mass and the conservation of momentum, the mean-velocity half width (reflecting the jet spread rate) and the relative mass flow rate (jet entrainment) are related to the decay rate of the centreline mean velocity. These relations are not subject to self-preservation. Both analytical and experimental results suggest that the jet spread rate (K1) and the entrainment rate (K3) (and thus the decay rate K2) can be well estimated from the centreline velocity, i.e., K1 ≈ 0.6K2 and K3 ∝ K_2. The effect of initial mean velocity and RMS velocity profiles on the downstream mean velocity field appears to be embodied in the constants K1 K2 and K3. The analytical relationship for the self-preserving Reynolds shear stress, obtained for the first time, works well.
Keywords:  turbulent plane jet      momentum conservation      Reynolds shear stress     
Received:  28 December 2010      Published:  15 July 2011
PACS:  47.27.-i (Turbulent flows)  
  47.27.wg (Turbulent jets)  

Cite this article: 

Mi Jian-Chun, Feng Bao-Ping Analytical investigation on mean and turbulent velocity fields of a plane jet 2011 Chin. Phys. B 20 074701

[1] Mi J, Nobes D S and Nathan G J 2001 J. Fluid Mech. 432 91
[2] George W K 1989 Advances in Turbulence 4 39
[3] Namar I and ötügen M V 1988 Exp. Fluids 6 387
[4] Deo R C, Mi J and Nathan G J 2008 Phys. Fluids 20 51
[5] Sakai Y, Tanaka N, Yamamoto M and Kushida T 2006 JSME Int. J. B-Fluid T. 49 115
[6] Tanaka N, Sakai Y, Yamamoto M and Kubo T 2006 JSME Int. J. B-Fluid T. 49 899
[7] Browne L W B, Antonia R A, Rajagopalan S and Chambers A J 1982 IUTAM Symposium 5 411
[8] Klein M, Sadiki A and Janicka J 2003 Int. J. Heat and Fluid Flow 24 785
[9] Deo R C, Mi J and Nathan G J 2006 Exp. Therm. Fluid Sci. 31 825
[10] Gordeyev S V and Thomas F O 2000 J. Fluid Mech. 414 145
[11] Deo R C, Mi J and Nathan G J 2007 Exp. Therm. Fluid Sci. 32 545
[12] Deo R C, Mi J and Nathan G J 2007 Exp. Therm. Fluid Sci. 32 596
[13] Mi J, Deo R C and Nathan G J 2005 Phys. Fluids 17 068102
[14] Heskestad G 1965 J. Appl. Mech. 32 721
[15] Thomas F O and Goldschmidt V W 1986 J. Fluid Mech. 163 227
[16] Mi J, Feng B, Deo R C and Nathan G J 2009 Acta Phy. Sin. 53 220 (in Chinese)
[17] Everitt K W and Robbins A G 1973 J. Fluid Mech. 88 563
[18] Sato H 1960 J. Fluid Mech. 7 53
[19] Goldschmidt V W and Bradshaw P 1973 Phys. Fluids 16 354
[20] Thomas F O and Goldschmidt V W 1986 J. Fluid Mech. 163 227
[21] Bradbury L J S 1965 J. Fluid Mech. 23 31
[22] Gutmark E and Wygnanski I 1976 J. Fluid Mech. 73 465
[23] Townsend A A 1976 The Structure of Turbulent Shear Flow (Cambridge: Cambridge University Press) p. 126
[24] Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press) p. 134
[1] Influences of initial velocity, diameter and Reynolds number on a circular turbulent air/air jet
Mi Jian-Chun, Du Cheng. Chin. Phys. B, 2011, 20(12): 124701.
[2] Quantum tunnelling radiation of Einstein--Maxwell--Dilaton--Axion black hole
Yang Shu-Zheng, Jiang Qing-Quan, Li Hui-Ling. Chin. Phys. B, 2005, 14(12): 2411-2414.
No Suggested Reading articles found!