Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 034201    DOI: 10.1088/1674-1056/20/3/034201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Absorption characteristic of arc plasma in the infrared region

Chen Yun-Yun(陈云云),Song Yang(宋旸), Li Zhen-Hua(李振华),and He An-Zhi(贺安之)
Department of Information Physics and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  In this paper, argon arc plasma is chosen as an example to study the absorption characteristics of arc plasma in the infrared region. Firstly, the phase and the attenuation constants are deduced for the given temperature, pressure and probe wavelength regions. Based on those constants, the dependence of the attenuation constant on the temperature and pressure in the vicinity of a certain probe wavelength is found. Then, theoretical analysis and discussion are conducted. Maximal absorption occurs at the position where the contributions of neutral particles and electrons come to a balance in a physical point of view, which may provide some measures to take for decreasing or controlling the plasma absorption of electromagnetic waves.
Keywords:  absorption characteristic      arc plasma      attenuation constant  
Received:  27 April 2010      Revised:  03 December 2010      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  52.25.Mq (Dielectric properties)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10804052), the Postgraduate Innovation Foundation of Jiangsu Province and the Key Postgraduate Planting Plan of Nanjing University of Science and Technology, China.

Cite this article: 

Chen Yun-Yun(陈云云),Song Yang(宋旸), Li Zhen-Hua(李振华),and He An-Zhi(贺安之) Absorption characteristic of arc plasma in the infrared region 2011 Chin. Phys. B 20 034201

[1] http://rocket.sfo.jaxa.jp/kspc/english/general/panf/im- ages/hiest_e.pdf
[2] Stewart G E 1967 IEEE Trans. on Antennas and Propagation 15 831
[3] Lin T C and Sproul L K 2006 Computers & Fluids 35 703
[4] Hu T P and Luo Q 2007 Chin. Phys. 16 179
[5] Hoffman J 1966 IEEE Trans. on Communication Technology COM-14 318
[6] Ely O P and Hockenberger R W 1966 J. Spacecraft and Rockets bf 3 310
[7] Baghdady E J and Ely O P 1966 Proc. IEEE bf 54 1134
[8] Destler W W, DeGrange J E, Fleischmann H H, Rodgers J and Segalov Z 1991 J. Appl. Phys. 69 6313
[9] Stalder K R, Vidmar R J and Eckstrom D J 1992 J. Appl. Phys. bf 72 5089
[10] Lamalle P U 1998 Plasma Phys. Control. Fusion 40 465
[11] Frankel D S, Nebolsine P E, Miller M G and Glynn J M 2004 SPIE Proceedings 5420
[12] Peng Z H, Peng J C and Ou Y 2006 Phys. Lett. A 359 56
[13] Srivastava A K, Prasad G, Atrey P K and Vinay Kumar 2008 J. Appl. Phys. 103 033302
[14] Kim M K, Michael Keidar and Iain D. Boyd 2008 AIAA 2008-1394
[15] Lucy R F 1968 Appl. Opt. 7 1571
[16] Churnside J H and McIntyre C M 1980 Appl. Opt. bf 19 582
[17] Arnon S and Kopeika N S 1997 Appl. Opt. 36 1987
[18] Morio Toyoshima, Nobuhiro Takahashi, Takashi Jono, Toshihiko Yamawaki, Keizo Nakagawa and Akio Yamamoto 2001 Opt. Express bf 9 592
[19] Yan Han and Guifang Li 2005 Opt. Express 13 7527
[20] Binbin Wu, Zeinab Hajjarian and Mohsen Kavehrad 2008 Appl. Opt. 47 3168
[21] Paul W Nugent, Joseph A Shaw and Sabino Piazzolla 2009 Opt. Express 17 7862
[22] Yan J H, Tu X, Ma Z Y, Pan X C, Cen K F and Cherone Bruno 2006 Acta Phys. Sin. 55 3451 (in Chinese)
[23] Jamison S P, Shen J L, Jones D R, Issac R C, Ersfeld B, Clark D and Jaroszynski D A 2003 J. Appl. Phys. 93 4334
[24] http://www.utdallas.edu/sim earle/PlasmaDischargePrim-er.ppt#256,1
[25] Ling Y S 2000 Journal of Air Force Engineering University (Natural Science Edition) 1 1 (in Chinese)
[26] Kaminska A, Lopez B, Izrar B and Dudeck M 2008 Plasma Sources Sci. Technol. 17 035018
[27] Sugiyama D, Nambu M and Jun-ichi Sakai 2001 J. Phys. Soc. Jpn. bf 70 977
[28] Chen Y Y, Song Y, He A Z and Li Z H 2009 Appl. Opt. bf 48 489
[29] Uchiyama H, Nakajima M and Yuta S 1985 Appl. Opt. 24 4111
[1] Influence of low ambient pressure on the performance of a high-energy array surface arc plasma actuator
Bing-Liang Tang(唐冰亮), Shan-Guang Guo(郭善广), Hua Liang(梁华)†, and Meng-Xiao Tang(唐孟潇). Chin. Phys. B, 2020, 29(10): 105204.
[2] Fluctuation of arc plasma in arc plasma torch with multiple cathodes
Zelong Zhang(张泽龙), Cheng Wang(王城), Qiang Sun(孙强), Weidong Xia(夏维东). Chin. Phys. B, 2019, 28(9): 095201.
[3] Characteristics of non-thermal AC arcs in multi-arc generator
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xinyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), Yuedong Meng(孟月东). Chin. Phys. B, 2019, 28(12): 125205.
[4] Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes
Cheng Wang(王城), Zelong Zhang(张泽龙), Haichao Cui(崔海超), Weiluo Xia(夏维珞), Weidong Xia(夏维东). Chin. Phys. B, 2017, 26(8): 085207.
[5] Production of a large area diffuse arc plasma with multiple cathode
Cheng Wang(王城), Hai-Chao Cui(崔海超), Wan-Wan Li(李皖皖), Meng-Ran Liao(廖梦然), Wei-Luo Xia(夏维珞), Wei-Dong Xia(夏维东). Chin. Phys. B, 2017, 26(2): 025202.
[6] Growth of small diameter multi-walled carbon nanotubes by arc discharge process
K. T. Chaudhary, J. Ali, P. P. Yupapin. Chin. Phys. B, 2014, 23(3): 035203.
[7] OES study of the gas phase during diamond films deposition in high power DC arc plasma jet CVD system
Zhou Zu-Yuan (周祖源), Chen Guang-Chao (陈广超), Tang Wei-Zhong (唐伟忠), Lü Fan-Xiu (吕反修). Chin. Phys. B, 2006, 15(5): 980-984.
[8] Plasma diffusion and transport in a magnetic duct filter
Zhang Tao (张涛), Liu Zhi-Guo (刘志国), Zhang Yi-Cong (张一聪), P. K. Chu (朱箭豪). Chin. Phys. B, 2002, 11(9): 963-966.
[9] THE INFLUENCE OF ELECTRON OSCILLATION ON PLASMA TRANSPORT THROUGH A MAGNETIC DUCT
Zhang Tao (张涛), T. K. Kwok (郭达勤), P. K. Chu (朱剑豪), I. G. Brown. Chin. Phys. B, 2001, 10(4): 320-323.
No Suggested Reading articles found!