Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 124701    DOI: 10.1088/1674-1056/20/12/124701
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Influences of initial velocity, diameter and Reynolds number on a circular turbulent air/air jet

Mi Jian-Chun, Du Cheng
State Key Laboratory of Turbulence and Complex Systems, Peking University, Beijing 100871, China;Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
Abstract  This paper assesses the suitability of the inflow Reynolds number defined by ReoUoD/ν (here Uo and D are respectively the initial jet velocity and diameter while ν is kinematic viscosity) for a round air/air jet. Specifically an experimental investigation is performed for the influences of Uo, D and Reo on the mean-velocity decay and spread coefficients (Ku, Kr) in the far field of a circular air jet into air from a smoothly contracting nozzle. Present measurements agree well with those previously obtained under similar inflow conditions. The relations KuUo and Kr ∝ 1/Uo for Uo < 5 m/s appear to work, while each coefficient approaches asymptotically to a constant for Uo > 6 m/s, regardless of the magnitudes of Reo and D. It is revealed that Reo may not be an appropriate dimensionless parameter to characterize the entire flow of a free air/air jet. This paper is the first paper that has challenged the suitability of Reo for turbulent free jets.
Keywords:  turbulent jet      momentum conservation      Reynolds number  
Received:  20 April 2011      Revised:  15 July 2011      Published:  15 December 2011
PACS:  47.27.-i (Turbulent flows)  
  47.27.wg (Turbulent jets)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10921202 and 11072005).

Cite this article: 

Mi Jian-Chun, Du Cheng Influences of initial velocity, diameter and Reynolds number on a circular turbulent air/air jet 2011 Chin. Phys. B 20 124701

[1] Zaman K B M Q 1985 J. Fluid Mech. 152 83
[2] Dimotakis P E, Miake-Lye R C and Panpantoniou D A 1983 Phys Fluids 26 3185
[3] Miller P L and Dimotakis P E 1991 Phys. Fluids A 3 1156
[4] Gilbrech R J 1991 An Experimental Investigation of Chemically Reacting Gas-Phase Turbulent Jets Ph. D. thesis California Institute of Technology, California, USA
[5] Koochesfahani M M and Dimotakis P E 1986 J. Fluid Mech. 170 83
[6] Michalke A 1984 Prog. Aerosp. Sci. 21 159
[7] Oosthuizen P H 83-FE-36 of ASME Applied Mechanics, Bioengineering, and Fluids Engineering Conference Houston/TX USA, June 20-22, 1983
[8] Bogey C and Bailly C 2006 Phys. Fluids 18 065101
[9] Pitts W M 1990 Expts. Fluids 11 135
[10] Panchapakesan N R and Lumley J L 1993 J. Fluid Mech. 246 197
[11] Hussein H J, Capp S P and George W K 1994 J. Fluid Mech. 258 31
[12] Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press) p. 101
[13] Malmström T G, Kirkpatrick A T, Christensen B and Knappmiller K D 1997 J. Fluid Mech. 346 363
[14] Mi J, Nathan G J and Zhou Y The 22nd International Congress of Theoretical & Applied Mechanics 25-29 August 2008, Adelaide, Australia
[15] Nottage H B 1951 Report on Ventilation Jets in Room Air Distribution Case Inst. of Technology, Cleveland, Ohio
[16] Todde V, Spazzini P and Sandberg M 2009 Expt. Fluids 47 279
[17] Abdel-Rahman A A, Chakroun W and AI-Fahed S F 1997 Mech. Res. Comm. 24 277
[18] Du C, Xu M and Mi J 2010 Acta Phys. Sin. 59 6331 (in Chinese)
[19] Mi J and Feng B 2010 Acta Phys. Sin. 59 4748 (in Chinese)
[20] Mi J, Feng B, Deo R C and Nathan G J 2009 Acta Phys. Sin. 58 7756 (in Chinese)
[21] Mi J and Feng B 2011 Chin. Phys. B 20 074701
[22] Tennekes H and Lumley J L 1972 A First Course in Turbulence (Cambridge: The MIT Press)
[23] Schlichting H 1979 Boundary Layer Theory 7th edn. (New York: Mc Graw-Hill)
[1] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[2] Research on the jet characteristics of the deflector-jet mechanism of the servo valve
Hao Yan(延皓), Feng-Ju Wang(王凤聚), Chang-Chun Li(李长春), Jing Huang(黄静). Chin. Phys. B, 2017, 26(4): 044701.
[3] Mean and fluctuating velocity fields of a diamond turbulent jet
Xu Min-Yi, Zhang Jian-Peng, Mi Jian-Chun, Nathan G. J., Kalt P. A. M.. Chin. Phys. B, 2013, 22(3): 034701.
[4] Analytical investigation on mean and turbulent velocity fields of a plane jet
Mi Jian-Chun, Feng Bao-Ping. Chin. Phys. B, 2011, 20(7): 074701.
[5] Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method
Zheng Lin, Chai Zhen-Hua, Shi Bao-Chang. Chin. Phys. B, 2006, 15(8): 1855-1863.
[6] Quantum tunnelling radiation of Einstein--Maxwell--Dilaton--Axion black hole
Yang Shu-Zheng, Jiang Qing-Quan, Li Hui-Ling. Chin. Phys. B, 2005, 14(12): 2411-2414.
[7] Numerical simulation of LBGK model for high Reynolds number flow
Zhou Xiao-Yang, Shi Bao-Chang, Wang Neng-Chao. Chin. Phys. B, 2004, 13(5): 712-719.
[8] Numerical analysis of fluid flow through a cylinder array using a lattice Boltzmann model
Dong Ping, Feng Shi-De, Zhao Ying. Chin. Phys. B, 2004, 13(4): 434-440.
No Suggested Reading articles found!