Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080202    DOI: 10.1088/1674-1056/19/8/080202
GENERAL Prev   Next  

Approximate homotopy similarity reduction for the generalized Kawahara equation via Lie symmetry method and direct method

Liu Xi-Zhong(刘希忠)
Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.
Keywords:  approximate homotopy symmetry method      approximate homotopy direct method      generalized Kawahara equation      homotopy series solutions  
Received:  04 January 2010      Revised:  13 January 2010      Accepted manuscript online: 
PACS:  02.30.Mv (Approximations and expansions)  
  02.20.Hj (Classical groups)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 10735030, 10475055, 10675065 and 90503006), the National Basic Research Program of China (Grant No. 2007CB814800).

Cite this article: 

Liu Xi-Zhong(刘希忠) Approximate homotopy similarity reduction for the generalized Kawahara equation via Lie symmetry method and direct method 2010 Chin. Phys. B 19 080202

[1] Bluman G W and Kumei S 1989 Symmetries and Differential Equations Appl. Math. Sci. (Berlin: Springer-Verlag) p. 81
[2] Rogers C and Ames W F 1989 Nonlinear Boundary Value Problems in Science and Engineering (Boston: Academic)
[3] Olver P J 1993 Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics 2nd ed. (New York: Springer-Verlag) p. 107
[4] Li J H and Lou S Y 2008 Chin. Phys. B 17 747
[5] Lian Z J, Chen L L and Lou S Y 2005 Chin. Phys. 14 1486
[6] Bluman G W and Cole J D 1969 J. Math. Mech. 18 1025
[7] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[8] Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 3611
[9] Tang X Y, Gao Y, Huang F and Lou S Y 2009 Chin. Phys. B 18 4622
[10] Zhang Y F and Zhang H Q 2002 Chin. Phys. 11 319
[11] Liao S J 1992 The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, PhD thesis, Shanghai Jiao Tong University
[12] Hayat T and Sajid M 2007 Phys. Lett. A 361 316
[13] Liao S J 2005 Appl. Math. Comput. 169 1186 par
[14] Liao S J 1999 Int. J. Nonlinear Mech. 34 759
[15] Liao S J 2003 Beyond Perturbation: Introduction to Homotopy Analysis Method (Boca Raton: Chapman and Hall/CRC)
[16] Liao S J 2004 Appl. Math. Comput. 147 499
[17] Jiao X Y, Yao R X and Lou S Y 2009 Chin. Phys. Lett. 26 040202
[18] Jiao X Y, Gao Y and Lou S Y 2009 Sci. Chin. Ser. G 52 1169
[19] Kakutani T and Ono H 1969 J. Phys. Soc. Jpn. 26 1305
[20] Kawahara T 1972 J. Phys. Soc. Jpn. 33 260
[21] Marchenko A B 1988 Prikl. Mat. Mekh. 52 230
[22] Il'ichev A T 1989 Current Mathematical Problems of Mechanics and Their Applications (Moscow: Nauka) p. 186
[23] Pomeau Y, Ramani A and Grammaticos B 1988 Physica D 31 127
[24] Boyd J P 1991 Phys. D 48 129
[1] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[2] Modified Chapman-Enskog expansion: A new way to treat divergent series
Zhen-Su She(佘振苏). Chin. Phys. B, 2017, 26(8): 080501.
[3] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[4] The effect of a permanent dipole moment on the polar molecule cavity quantum electrodynamics
Jing-Yun Zhao(赵晶云), Li-Guo Qin(秦立国), Xun-Ming Cai(蔡勋明), Qiang Lin(林强), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2016, 25(4): 044202.
[5] Homotopic mapping solitary traveling wave solutions for the disturbed BKK mechanism physical model
Zhou Xian-Chun (周先春), Shi Lan-Fang (石兰芳), Han Xiang-Lin (韩祥临), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2014, 23(9): 090204.
[6] A class of asymptotic solution for the time delay wind field model of an ocean
Zhou Xian-Chun (周先春), Shi Lan-Fang (石兰芳), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2014, 23(4): 040202.
[7] Optical transfer function analysis of circular-pupil wavefront coding systems with separable phase masks
Zhao Ting-Yu(赵廷玉), Liu Qin-Xiao(刘钦晓), and Yu Fei-Hong(余飞鸿) . Chin. Phys. B, 2012, 21(6): 064203.
[8] Modified variational iteration method for an El Niño Southern Oscillation delayed oscillator
Cao Xiao-Qun(曹小群), Song Jun-Qiang(宋君强), Zhu Xiao-Qian(朱小谦), Zhang Li-Lun(张理论), Zhang Wei-Min(张卫民), and Zhao Jun(赵军) . Chin. Phys. B, 2012, 21(2): 020203.
[9] Asymptotic solving method for a sea–air oscillator model of atmospheric physics
Lin Wan-Tao(林万涛), Lin Yi-Hua(林一骅), and Mo Jia-Qi(莫嘉琪) . Chin. Phys. B, 2012, 21(1): 010204.
[10] Modified (2+1)-dimensional displacement shallow water wave system and its approximate similarity solutions
Liu Ping(刘萍) and Fu Pei-Kai(付培凯) . Chin. Phys. B, 2011, 20(9): 090203.
[11] Asymptotic solution for the Eiño time delay sea–air oscillator model
Mo Jia-Qi(莫嘉琪), Lin Wan-Tao(林万涛), and Lin Yi-Hua(林一骅). Chin. Phys. B, 2011, 20(7): 070205.
[12] Disturbed solution of the El Niño-southern oscillation sea–air delayed oscillator
Xie Feng(谢峰), Lin Wan-Tao(林万涛), Lin Yi-Hua(林一骅), and Mo Jia-Qi(莫嘉琪) . Chin. Phys. B, 2011, 20(1): 010208.
[13] New approximate solution for time-fractional coupled KdV equations by generalised differential transform method
Liu Jin-Cun(刘金存) and Hou Guo-Lin(侯国林). Chin. Phys. B, 2010, 19(11): 110203.
[14] Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation
Mo Jia-Qi(莫嘉琪) and Chen Xian-Feng(陈贤峰). Chin. Phys. B, 2010, 19(10): 100203.
[15] Effects of memory on scaling behaviour of Kardar–Parisi–Zhang equation
Tang Gang(唐刚), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Han Kui(韩奎), and Xun Zhi-Peng(寻之朋). Chin. Phys. B, 2010, 19(10): 100508.
No Suggested Reading articles found!