Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 074216    DOI: 10.1088/1674-1056/19/7/074216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Monolithic optical gates based on integration of evanescently-coupled uni-traveling-carrier photodiodes and electroabsorption modulators

Zhang Yun-Xiao, Liao Zai-Yi, Zhao Ling-Juan, Pan Jiao-Qing, Zhu Hong-Liang, Wang Wei
Key Laboratory of Semiconductors Materials, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We report on chip-scale optical gates based on the integration of evanescent waveguide unitraveling-carrier photodiodes (EC-UTC-PDs) and intra-step quantum well electroabsorption modulators (IQW-EAMs) on n-InP substrates. These devices exhibit simultaneously 2.1 GHz and -16.2 dB RF-gain at 21 GHz with a 450 Ω thin-film resistor and a bypass capacitor integrated on a chip.
Keywords:  electroabsorption modulator      intra-step quantum wells      uni-traveling-carrier RF-gain     
Published:  15 July 2010
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
  42.79.Hp (Optical processors, correlators, and modulators)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  84.32.Ff (Conductors, resistors (including thermistors, varistors, and photoresistors))  
  84.32.Tt (Capacitors)  
Fund: Project supported by the National High Technology Research and Development of China (Grant Nos. 2006AA01Z256, 2007AA03Z419 and 2007AA03Z417), the State Key Development Program for Basic Research of China (Grant Nos. 2006CB604901and 2006CB604902), and the National Natural Science Foundation of China (Grant Nos. 90401025, 60736036, 60706009 and 60777021).

Cite this article: 

Zhang Yun-Xiao, Liao Zai-Yi, Zhao Ling-Juan, Pan Jiao-Qing, Zhu Hong-Liang, Wang Wei Monolithic optical gates based on integration of evanescently-coupled uni-traveling-carrier photodiodes and electroabsorption modulators 2010 Chin. Phys. B 19 074216

[1] Yoo S J B 1996 IEEE J. Light. Tech. 14 995
[2] Sabnis V A, Demir H V, Fidaner O, Harris J S, Miller D A B, Zheng J F, Li N, Wu T C, Chen H T and Houng Y M 2004 Appl. Phys. Lett. 84 469
[3] Xu X J, Chen S W, Xu H H, Sun Y, Yu Y D, Yu J X and Wang Q M 2009 Chin. Phys. B 18 3900
[4] Wang J, Sun J and Zhang X 2008 Electronic Letters 44 413
[5] Kodama S, Yoshimatsu T and Ito H 2004 Electron. Lett. 40 555
[6] Yoshimatsu T, Kodama S, Yoshino K and Ito H 2004 Electron. Lett. 40 626
[7] Kodama S, Shimizu T, Yoshimatsu T, Yoshino K, Furuta T and Ito H 2004 Electron. Lett. 40 696
[8] Yoshimatsu T, Kodama S, Yoshino K and Ito H 2005 IEEE Photon. Technol. Lett. 17 2367
[9] Zhang Y X, Liao Z Y, Pan J Q, Zhou F, Zhu H L, Zhao L J and Wang W 2009 Chin. Phys. Lett. 26 034215-1
[10] Yoshino K, Yoshimatsu T, Kodama S and Ito H 2006 IEEE Trans. Adv. Packag. 29 766
[11] Achouche M, Magnin V, Harari J, Lelarge F, Derouin E, Jany C, Carpentier D, Blache F and Descoster D 2004 IEEE Photon. Technol. Lett. 16 584
[12] Zhang Y X, Pan J Q, Zhao L J, Zhu H L and Wang W 2010 Chin. Phys. Lett. 27 028501
[13] Shin D S and Yu P K L 2001 J. Appl. Phys. 89 1515
[14] Chen J X, Wu Y, Chen W X, Shubin I, Clawson A, Chang W S C and Yu P K L 2004 IEEE Photon. Technol. Lett. 16 440
[15] Zhang Y X, Liao Z Y and Wang W 2009 Chin. Phys. B 18 2393
[16] Demir H V, Sabnis V A, Fidaner O, Zheng J, Harris J S and Miller D A B 2005 IEEE J. Sel. Topics Quantum Electron. 11 86 endfootnotesize
[1] Monolithic integration of electroabsorption modulators and tunnel injection distributed feedback lasers using quantum well intermixing
Wang Yang, Pan Jiao-Qing, Zhao Ling-Juan, Zhu Hong-Liang, Wang Wei. Chin. Phys. B, 2010, 19(12): 124215.
No Suggested Reading articles found!