Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 104209    DOI: 10.1088/1674-1056/19/10/104209
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

A new tracking error detection method using amplitude difference detection for signal waveform modulation multi-level discs

Yan Ming-Ming, Pei Jing, Pan Long-Fa
Optical Memory National Engineering Research Center, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
Abstract  The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.
Keywords:  multi-level technology      tracking error      amplitude difference      signal waveform modulation     
Received:  20 January 2010      Published:  15 October 2010
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  42.79.Vb (Optical storage systems, optical disks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60977005).

Cite this article: 

Yan Ming-Ming, Pei Jing, Pan Long-Fa A new tracking error detection method using amplitude difference detection for signal waveform modulation multi-level discs 2010 Chin. Phys. B 19 104209

[1] Lo F H, Kuo J W, Tseng N H, Ju J J and Howe D 2004 Jpn. J. Appl. Phys. 43 4852
[2] Xiao J X, Qi G S, Hu H and Xu D Y 2005 Acta Phys. Sin. 54 102 (in Chinese)
[3] Hu H, Pan L F, Qi G S, Hu H and Xu D Y 2006 Acta Phys. Sin. 55 1759 (in Chinese)
[4] Song J, Xu D Y, Qi G S, Hu H, Zhang Q C and Xiong J P 2006 Chin. Phys. 15 1788
[5] Hu H, Xiong J P, Xu D Y, Qi G S, Xiao J X and Hu H 2007 Acta Phys. Sin. 56 208 (in Chinese)
[6] Tang Y, Pei J, Pan L F, Ni Y, Hu H and Zhang B Q 2008 Chin. Phys. Lett. 25 1709
[7] Tang Y, Pei J, Ni Y, Pan L F, Hu H and Zhang B Q 2008 Opt. Express 16 6156
[8] ECMA 2001 Standard ECMA-267 (3rd edn.) (Geneva: ECMA) pp. 43--46
[9] Shen Q H, Pei J, Xu H Z, Wang L and Xu D Y 2006 Jpn. J. Appl. Phys. 45 5764
[10] Milster T D 1998 Appl. Opt. 37 6878
[11] Braat J 1998 Appl. Opt. 37 6973
[1] Improved partial response maximum likelihood method combining modulation code for signal waveform modulation multi-level disc
Wang He-Qun, Pei Jing, Pan Long-Fa. Chin. Phys. B, 2014, 23(10): 104217.
[2] Read channel for signal waveform modulation multi-level disc
Wang He-Qun, Xu Hai-Zheng, Pan Long-Fa, Liu Hai-Long. Chin. Phys. B, 2010, 19(12): 124216.
No Suggested Reading articles found!