Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(5): 1601-1606    DOI: 10.1088/1674-1056/17/5/012
GENERAL Prev   Next  

Squeezing via coupling of Bose--Einstein condensates in a double-well potential with a cavity light field

Zhou Lu(周鲁)a)b)c)d)†, Kong Ling-Bo(孔令波)a)b)c), and Zhan Ming-Sheng(詹明生)a)b)
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, Chinab Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China; c Graduate School of the Chinese Academy of Sciences, Beijing 100080, Chinad State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  Squeezing via the interaction between the cavity light field and the Bose--Einstein Condensate (BEC) in a double-well potential is considered within the context of the two-mode approximation. For the cavity light field initially in a coherent state, it is shown that by choosing appropriate parameters, quadrature squeezing of the cavity light field can be achieved and it exhibits periodic oscillation. We also study the case in which BEC is tuned to resonance by periodically modulating the trapping potential, and the quadrature squeezing of the cavity field exhibits periodic collapse and revival effect. Both analytic and numerical calculations are performed, and they are found to be in good agreement with each other. The result shows that the quantum statistical properties of the cavity light field can be manipulated by its coupling with the condensates in the double-well potential. On the other hand, dynamical properties of the condensates in the double-well potential will be reflected by the quadrature squeezing of the light field.
Keywords:  Bose--Einstein Condensate      double-well potential      squeezing  
Received:  26 September 2007      Revised:  28 September 2007      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  37.10.De (Atom cooling methods)  
Fund: Project supported by the National Basic Research Program of China (Grant No 2006CB921203), the National Natural Science Foundation of China (Grant No 10474119) and China Postdoctoral Science Foundation.

Cite this article: 

Zhou Lu(周鲁), Kong Ling-Bo(孔令波), and Zhan Ming-Sheng(詹明生) Squeezing via coupling of Bose--Einstein condensates in a double-well potential with a cavity light field 2008 Chin. Phys. B 17 1601

[1] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[2] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[3] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[4] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[5] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[6] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[7] Effects of postselected von Neumann measurement on the properties of single-mode radiation fields
Yusuf Turek(玉素甫·吐拉克). Chin. Phys. B, 2020, 29(9): 090302.
[8] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[9] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[10] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[11] Spin squeezing in Dicke-class of states with non-orthogonal spinors
K S Akhilesh, K S Mallesh, Sudha, Praveen G Hegde. Chin. Phys. B, 2019, 28(6): 060302.
[12] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[13] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[14] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[15] A new two-mode thermo-and squeezing-mixed optical field
Jun Zhou(周军), Hong-yi Fan(范洪义), Jun Song(宋军). Chin. Phys. B, 2017, 26(7): 070301.
No Suggested Reading articles found!