Please wait a minute...
Chinese Physics, 2004, Vol. 13(9): 1549-1552    DOI: 10.1088/1009-1963/13/9/032
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The heat capacity of small metallic grains studied by the random matrices theory

Chen Zhi-Qian (陈志谦), Cheng Nan-Pu (程南璞), Shi Zhen-Gang (施振刚)
School of Materials Science and Engineering, Southwest China Normal University, Chongqing 400715, China
Abstract  The random matrices theory is applied to a study of the heat capacity of small metallic grains. The numerical calculations indicate that the level distribution and the difference between the particles respectively with an even and an odd numbers of electrons are important for the heat capacity of the small metallic grains at a low temperature and the level correlation mainly affects the heat capacity at a high temperature.
Keywords:  heat capacity      small metallic grains      random matrices theory  
Received:  18 February 2004      Revised:  05 March 2004      Accepted manuscript online: 
PACS:  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.25.Bt (Thermodynamic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10147207) and the Chongqing Commission of Science & Technology.

Cite this article: 

Chen Zhi-Qian (陈志谦), Cheng Nan-Pu (程南璞), Shi Zhen-Gang (施振刚) The heat capacity of small metallic grains studied by the random matrices theory 2004 Chinese Physics 13 1549

[1] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[2] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[3] Anomalous low-temperature heat capacity in antiperovskite compounds
Xin-Ge Guo(郭新格), Jian-Chao Lin(林建超), Peng Tong(童鹏), Shuai Lin(蔺帅), Cheng Yang(杨骋), Wen-Jian Lu(鲁文建), Wen-Hai Song(宋文海), Yu-Ping Sun(孙玉平). Chin. Phys. B, 2017, 26(2): 026501.
[4] Entanglement detection in the mixed-spin Ising-XY model
Hamid Arian Zad. Chin. Phys. B, 2016, 25(3): 030303.
[5] Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes
Wei Yi-Huan (魏益焕), Ren Jun (任军). Chin. Phys. B, 2013, 22(3): 030402.
[6] Pressure-induced phase transition in silicon nitride material
Chen Dong (陈东), Yu Ben-Hai (余本海). Chin. Phys. B, 2013, 22(2): 023104.
[7] Crystal structure and thermochemical properties of phase change materials bis(1-octylammonium) tetrachlorochromate
Lu Dong-Fei (卢冬飞), Di You-Ying (邸友莹), He Dong-Hua (何东华 ). Chin. Phys. B, 2012, 21(8): 080702.
[8] Low-temperature heat capacities and standard molar enthalpy of formation of pyridine-2,6-dicarboxylic acid
Yang Wei-Wei(杨伟伟), Di You-Ying(邸友莹), Kong Yu-Xia(孔玉霞), and Tan Zhi-Cheng(谭志诚). Chin. Phys. B, 2010, 19(6): 060517.
[9] Elastic constants and thermodynamic properties of Mg2SixSn1-x from first-principles calculations
Liu Na-Na(刘娜娜), Song Ren-Bo(宋仁伯), and Du Da-Wei(杜大伟). Chin. Phys. B, 2009, 18(5): 1979-1984.
[10] Low-temperature heat capacities and standard molar enthalpy of formation of 4-(2-aminoethyl)-phenol (C8H11NO)
Di You-Ying(邸友莹), Kong Yu-Xia(孔玉霞), Yang Wei-Wei(杨伟伟), and Tan Zhi-Cheng(谭志诚). Chin. Phys. B, 2008, 17(9): 3276-3283.
[11] Low-temperature heat capacities and standard molar enthalpy of formation of N-methylnorephedrine C11H17NO(s)
Di You-Ying(邸友莹), Wang Da-Qi(王大奇), Shi Quan(史全), and Tan Zhi-Cheng(谭志诚). Chin. Phys. B, 2008, 17(8): 2859-2866.
[12] Electronic spin susceptibility of metallic superconductive nano-particles
Li Feng (李凤), Chen Zhi-Qian (陈志谦), Li Qing (李庆). Chin. Phys. B, 2006, 15(5): 1075-1080.
[13] Melting and Grüneisen parameters of NaCl at high pressure
Chen Qi-Feng (陈其峰), Cai Ling-Cang (蔡灵仓), Duan Su-Qing (段素青), Chen Dong-Quan (陈栋泉). Chin. Phys. B, 2004, 13(7): 1091-1095.
No Suggested Reading articles found!