| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Ultra-broadband acoustic logic gate based on passive phase manipulation |
| Yu-Han Xia(夏宇涵)1,†, Nai-Qi Pang(庞乃琦)1,†, Yin Wang(王垠)1, Long-Xu Wang(王龙旭)2, and Yong Ge(葛勇)1,2,á |
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2 State Key Laboratory of Acoustics and Marine Information, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract In recent years, acoustic logic gates has attracted growing interest in acoustics due to their promising applications in acoustic communication and signal processing. For practical implementation, these logic gates must operate over a certain bandwidth to ensure reliable performance. However, current experimental realizations have predominantly been confined to single-frequency or narrowband operation, leaving their broadband capabilities largely unverified. To address this gap, we present both numerical and experimental demonstrations of three basic acoustic logic gates (OR, NOT, and AND) using a phased unit cell composed of a central channel flanked by two arrays of semicircular cavities. By leveraging phase modulation of the unit cells and linear interference of sound, we achieve these logic operations with a uniform threshold of $I_{\rm t}=0$.25. Remarkably, the measured fractional bandwidths (bandwidth relative to center frequency) reach approximately 111.5% (OR), 37.2% (NOT), and 48.5% (AND), demonstrating ultra-broadband functionality. The proposed logic gates combine exceptional bandwidth with structural simplicity, offering significant potential for applications in acoustic computing, information processing, and integrated acoustic systems.
|
Received: 01 April 2025
Revised: 29 May 2025
Accepted manuscript online: 20 June 2025
|
|
PACS:
|
43.20.+g
|
(General linear acoustics)
|
| |
43.60.+d
|
(Acoustic signal processing)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174159). |
Corresponding Authors:
Yong Ge
E-mail: geyong@ujs.edu.cn
|
Cite this article:
Yu-Han Xia(夏宇涵), Nai-Qi Pang(庞乃琦), Yin Wang(王垠), Long-Xu Wang(王龙旭), and Yong Ge(葛勇) Ultra-broadband acoustic logic gate based on passive phase manipulation 2026 Chin. Phys. B 35 014301
|
[1] Zhang S C, Xue X Y, Chen C and Sun Z T 2019 Int. J. Arg. Biol. Eng. 12 82 [2] Wang B, Du X X, Wang Y N and Mao H P 2024 Int. J. Arg. Biol. Eng. 17 27 [3] Yang N, Xie L L, Pan C, YuanMF, Tao Z H and Mao H P 2019 J. Food Process. Eng. 42 e12976 [4] Xu Y, Hassan M M, Ali S, Li H H, Ouyang Q and Chen Q S 2021 J. Agric. Food Chem. 69 1667 [5] Chattopadhyay T and Roy J N 2013 Opt. Commun. 300 119 [6] Xiu X M, Geng X, Wang S L, Cui C, Li Q Y, Ji Y Q and Dong L 2020 Adv. Quantum Technol. 2 1900066 [7] Chinmoy M and Abhijit S 2023 Opt. Quantum. Electron 55 906 [8] Gao X X, Chen B J, Shum K M, Zhang Q L, Ma Q, Cui W Y, Cui T J and Chan C H 2023 Adv. Mater. Technol. 8 2201225 [9] Tian X Y, Li Q and Ren D H 2023 Chin. Phys. B 32 057101 [10] Li L L, Luo J, Xia J, Zhou Y, Liu X X and Zhao G P 2023 Chin. Phys. B 32 017506 [11] Azana J 2010 IEEE Photon. J. 2 359 [12] Bie Y Q, Liao Z M, Zhang H Z, Li G R, Ye Y, Zhou Y B, Xu J, Qin Z X, Dai L and Yu D P 2011 Adv. Mater. 23 649 [13] Wei H, Wang Z X, Tian X R, Käll M and Xu H X 2011 Nat. Commun. 2 387 [14] Zhang Y X, Chen Y P and Chen X F 2011 Appl. Phys. Lett. 99 161117 [15] Fu Y L, Hu X Y, Lu C C, Yue S, Yang H and Gong Q H 2012 Nano Lett. 12 5784 [16] Abdulnabi S H and Abbas M N 2018 J. Nanophotonics 13 016009 [17] Idres S, Habif J L and Hashemi H 2024 Opt. Express 32 36063 [18] Liu Z Y, Zhang X X, Mao W Y, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734 [19] Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N and Ming N B 2007 Nat. Mater. 6 744 [20] Torrent D and Sánchez-Dehesa J 2010 Phys. Rev. Lett. 105 174301 [21] Wang P, Casadei F, Shan S,Weaver J C and Bertoldi K 2014 Phys. Rev. Lett. 113 014301 [22] Lu J Y, Qiu C Y, KeMZ and Liu Z Y 2016 Phys. Rev. Lett. 116 093901 [23] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452 [24] Li J, Fok L, Yin X B, Bartal G and Zhang X 2009 Nat. Mater. 8 931 [25] Christensen J and de Abajo F J G 2012 Phys. Rev. Lett. 108 124301 [26] Liang X Z and Li S J 2012 Phys. Rev. Lett. 108 114301 [27] Quan L, Zhong X, Liu X Z, Gong X F and Johnson P A 2014 Nat. Commun. 5 3188 [28] Li Y, Liang B, Gu X M, Zou X Y and Cheng J C 2013 Sci. Rep. 3 2546 [29] Li Y, Shen C, Xie Y B, Li J F, Wang W Q, Cummer S A and Jing Y 2017 Phys. Rev. Lett. 119 035503 [30] Assouar B, Liang B, Wu Y, Li Y, Cheng J C and Jing Y 2018 Nat. Rev. Mater. 3 460 [31] Quan L, Sounas D L and Alù A 2019 Phys. Rev. Lett. 123 064301 [32] Ma F Y, Wang C, Liu C R and Wu J H 2021 J. Appl. Phys. 129 231103 [33] Wang Y, Zou H Y, Lu Y J, Gu S, Qian J, Xia J P, Ge Y, Sun H X, Yuan S Q and Liu X J 2023 Prog. Electromagn. Res. 177 127 [34] Li F, Anzel P, Yang J, Kevrekidis P G and Daraio C 2014 Nat. Commun. 5 5311 [35] Bringuier S, Swinteck N, Vasseur J O, Robillard J F, Runge K, Muralidharan K and Deymier P A 2011 J. Acoust. Soc. Am. 130 1919 [36] Zhang T, Cheng Y, Guo J Z, Xu J Y and Liu X J 2015 Appl. Phys. Lett. 106 113503 [37] Zhang T, Cheng Y, Yuan B G, Guo J Z and Liu X J 2016 Appl. Phys. Lett. 108 183508 [38] Wang Y, Xia J P, Sun H X, Yuan S Q and Liu X J 2019 Sci. Rep. 9 8355 [39] Lu Y J, Ge Y, Yuan S Q, Sun H X and Liu X J 2020 J. Phys. D: Appl. Phys. 53 015301 [40] He H, Qiu C, Ye L, Cai X, Fan X, Ke M, Zhang F and Liu Z Y 2018 Nature 560 61 [41] Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G and Cheng J C 2019 Phys. Rev. Lett. 122 014302 [42] Zhang X J, Lu M H and Chen Y F 2021 Phys. Rev. Lett. 126 156401 [43] Xue H R, Yang Y H and Zhang B L 2022 Nat. Rev. Mater. 7 974 [44] Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R and Liu X J 2018 Adv. Mater. 30 1805002 [45] Lu Y J, Wang Y, Ge Y, Yuan S Q, Jia D, Sun H X and Liu X J 2022 Appl. Phys. Lett. 121 123506 [46] Ge Y, Shi B J, Jia D, Sun H Y, Xue H R, Yuan S Q and Zhang B L 2023 Appl. Phys. Lett. 123 171703 [47] Li Y Y, Huang K Q, Gong M Y, Sun C H, Gao S L, Lai Y and Liu X Z 2024 Results Phys. 57 107421 [48] Zuo C Y, Xia J P, Sun H X, Ge Y, Yuan S Q and Liu X J 2017 Appl. Phys. Lett. 111 243501 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|