Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 053204    DOI: 10.1088/1674-1056/ac9b2f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Numerical studies of isotopic selective photoionization of ytterbium in a three-step ionization scheme

Xiao-Yong Lu(卢肖勇) and Li-De Wang(王立德)
Science and Technology on Particle Transport and Separation Laboratory, CNNC, Tianjin 300180, China
Abstract  Selective photoionization of ytterbium isotope is studied numerically based on a three-step photoionization scheme, 4${\rm f}^{14}$6${\rm s}^{2 1}$S$_{0 }$ (0 cm$^{-1}$) $ \to $ 4${\rm f}^{14}$6${\rm s}$6p$\ {}^{3}$P$_{1 }$ (17992.008 cm$^{-1}$) $ \to $ (4${\rm f}^{13}$6${\rm s}^{2}$6p) (7/2, 3/2)$_{2}$ (35196.98 cm$^{-1}$) $ \to $ auto-ionization state (52353 cm$^{-1}$) $ \to $ Yb$^{+}$, by the density matrix theory with the consideration of atomic hyperfine structures and magnetic sublevels. To examine the physical model, the numerical isotopic abundance of ytterbium is compared with that from mass spectroscopy experiment, showing that they are in good agreement with each other. The excitation process and ionization process of ytterbium, especially for odd isotopes, are discussed and analyzed in detail on this basis. The effects of frequency detuning, power densities, spectral bandwidths, polarization of two excitation lasers, and atomic Doppler broadening on the total ionization yield and isotopic abundance are investigated numerically and the optimal excitation conditions for $^{176}$Yb enrichment are identified semi-quantitatively.
Keywords:  ytterbium isotope      hyperfine structure      selective photoionization  
Received:  07 June 2022      Revised:  02 October 2022      Accepted manuscript online:  19 October 2022
PACS:  32.80.-t (Photoionization and excitation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Corresponding Authors:  Xiao-Yong Lu     E-mail:  lu-xy15@tsinghua.org.cn

Cite this article: 

Xiao-Yong Lu(卢肖勇) and Li-De Wang(王立德) Numerical studies of isotopic selective photoionization of ytterbium in a three-step ionization scheme 2023 Chin. Phys. B 32 053204

[1] Chellan P and Sadler P J 2015 Phil. Trans. R. Soc. A 373 20140182
[2] Yakovlenko S I 1999 Russ. Phys. J. 42 732
[3] Babichev A P, Grigoriev I S and Grigoriev A I 2005 Quantum Electron 35 879
[4] Yamabayashi H 1994 Radioisotopes 43 296
[5] D'yachkov A B, Gorkunov A A and Labozin A V 2018 Opt. Spectrosc 124 13
[6] Cutler C S, Smith C J and Ehrhardt G J 2000 Cancer Biother. Radio. 15 531
[7] Fricker S P 2006 Chem. Soc. Rev. 35 524
[8] Kostelnik T I and Orvig C 2019 Chem. Rev. 119 902
[9] Dash A, Raghavan M and Pillai A 2015 Nucl. Med. Mol. Imaging 49 85
[10] Banerjee S, Pillai M R A and Knapp F F 2015 Chem. Rev. 115 2934
[11] Suryanarayana M V and Sankari M 2021 J. Opt. Soc. Am. B 38 3331
[12] Suryanarayana M V 2021 J. Opt. Soc. Am. B 38 353
[13] Vogel W V, Marck S C and Versleijen M W J 2021 Eur. J. Nucl. Med. Mol. Imaging. 48 2329
[14] Borisov S K, Kuz'mina M A and Mishin V A 1996 Russ. Laser Res. 17 332
[15] Yakovlenko S I 1998 Quantum Electron 28 945
[16] Andreev O I, Derzhiev V I and Dyakin V M 2006 Quantum Electron 36 84
[17] Park H, Kwon D H and Cha Y H 2008 J. Nucl. Sci. Technol. Supplement 6 111
[18] Park H, Kwon D H and Cha Y H 2006 J. Korean Phys. Soc. 49 382
[19] Rabi I I 1937 Phys. Rev. 51 652
[20] Demtröder W 2008 Laser Spectroscopy Vol. 1 Basic Principles, 4th edn. (Berlin, Heidelberg: Springer-Verlag)
[21] Greenland P T 1990 Contemp. Phys. 31 405
[22] Sankari M, Kumar P and Suryanarayana M 2008 J. Opt. Soc. Am. B 25 1820
[23] Krynetskii B B, Mishin V A and Prokhorov A M 1991 J. Appl. Spectrosc. 54 338
[24] Park H, Kostritsa S and Kwon D 2002 J. Korean Phys. Soc. 41 322
[25] Lu X Y, Wang L D and Li Y F 2022 Chin. Phys. B 31 063203
[26] Sahoo A C, Mandal P K and Shah M L 2017 J. Phys. Commun. 1 055010
[1] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[2] Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state
Defu Wang(王得富), Xuping Shao(邵旭萍), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2021, 30(11): 113301.
[3] Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling
Qing-Hui Wang(王庆辉), Xu-Ping Shao(邵旭萍), Xiao-Hua Yang(杨晓华). Chin. Phys. B, 2016, 25(1): 013301.
[4] Spectrally selective optical pumping in Doppler-broadened cesium atoms
Zhang Jun-Hai (张军海), Zeng Xian-Jin (曾宪金), Li Qing-Meng (李庆萌), Huang Qiang (黄强), Sun Wei-Min (孙伟民). Chin. Phys. B, 2013, 22(5): 053202.
[5] Relativistic energy, fine structure and hyperfine structure of the low-lying excited states for Be-like system
Zhang Meng (张孟), Gou Bing-Cong (苟秉聪). Chin. Phys. B, 2005, 14(8): 1554-1558.
[6] Measurement of hyperfine structure and isotope shifts in the 580.56nm line of 142-145,146,148,150Nd+
Ma Hong-Liang (马洪良). Chin. Phys. B, 2005, 14(3): 511-515.
[7] Hyperfine structure of singly ionized lanthanum and praseodymium
Ma Hong-Liang (马洪良). Chin. Phys. B, 2002, 11(9): 905-909.
[8] MEASUREMENT OF HYPERFINE COUPLING CONSTANTS OF THE EXCITED STATES 4f7(8S07/2)6p3/2(7/2, 3/2) IN 151,153Eu+
Ma Hong-liang (马洪良), Yang Fu-jia (杨福家). Chin. Phys. B, 2001, 10(6): 512-515.
No Suggested Reading articles found!