Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037305    DOI: 10.1088/1674-1056/ac4cba
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin—orbit stable dirac nodal line in monolayer B6O

Wen-Rong Liu(刘文荣)1, Liang Zhang(张亮)1, Xiao-Jing Dong(董晓晶)2, Wei-Xiao Ji(纪维霄)1, Pei-Ji Wang(王培吉)1, and Chang-Wen Zhang(张昌文)1,†
1 School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China;
2 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
Abstract  The two-dimensional (2D) materials with nodal line band crossing have been attracting great research interest. However, it remains a challenge to find high-stable nodal line structure in 2D systems. Herein, based on the first-principles calculations and theoretical analysis, we propose that monolayer B6O possesses symmetry protected Dirac nodal line (DNL) state, with its Fermi velocity of 106 m/s in the same order of magnitude as that of graphene. The origin of DNL fermions is induced by coexistence of time-reversal symmetry and inversion symmetry. A two-band tight-binding model is further given to understand the mechanism of DNL. Considering its robustness against spin—orbit coupling (SOC) and high structural stability, these results suggest monolayer B6O as a new platform for realizing future high-speed low-dissipation devices.
Keywords:  monolayer B6O      Dirac nodal line      two-band tight-binding model  
Received:  17 September 2021      Revised:  03 January 2022      Accepted manuscript online:  19 January 2022
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
Fund: Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and the National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Wen-Rong Liu(刘文荣), Liang Zhang(张亮), Xiao-Jing Dong(董晓晶), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文) Spin—orbit stable dirac nodal line in monolayer B6O 2022 Chin. Phys. B 31 037305

[1] Jiang F X, Zhao Y, Zhou G W, Zhang J, Fan J P and Xu X H 2015 Chin. Phys. Lett. 32 087501
[2] Pan L, Wen H, Huang L, Chen L, Deng H X, Xia J B and Wei Z 2019 Chin. Phys. B 28 107504
[3] Zhang S S, Ji W X, Zhang C W, Zhang S F, Li P, Li S S and Yan S S 2018 Chin. Phys. Lett. 35 087303
[4] Zhang S J, Zhang C W, Zhang S F, Ji W X, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[5] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 15001
[6] Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[7] Mullen K, Uchoa B and Glatzhofer D T 2015 Phys. Rev. Lett. 115 026403
[8] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[9] Fu B, Fan X, Ma D, Liu C C and Yao Y 2018 Phys. Rev. B 98 1
[10] Feng X, Yue C, Song Z, Wu Q and Wen B 2018 Phys. Rev. Mater. 2 014202
[11] Wang J T, Nie S, Weng H, Kawazoe Y and Chen C 2018 Phys. Rev. Lett. 120 26402
[12] Bian G, Chang T R and Sankar R 2016 Nat. Commun. 7 10556
[13] Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z 2016 Phys. Rev. Lett. 117 016602
[14] Li R, Ma H, Cheng X, Wang S, Li D, Zhang Z, Li Y and Chen X Q 2016 Phys. Rev. Lett. 117 096401
[15] Kobayashi S, Yamakawa Y, Yamakage A, Inohara T, Okamoto Y and Tanaka Y 2017 Phys. Rev. B 95 1
[16] Zhang R W, Liu C C, Ma D S, Wang M and Yao Y 2018 Phys. Rev. B 98 1
[17] Bzdušek T, Wu Q S, Rüegg A, Sigrist M and Soluyanov A A 2016 Nature 538 75
[18] Wang S S, Liu Y, Yu Z M, Sheng X L and Yang S A 2017 Nat. Commun. 8 1
[19] Yan Z, Bi R, Shen H, Lu L, Zhang S C and Wang Z 2017 Phys. Rev. B 96 1
[20] Andrei Bernevig B, Taylor L and Hughes S C Z 1998 Science 314 1757
[21] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 1
[22] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898
[23] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 1
[24] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226
[25] Weng H, Fang C, Fang Z, Andrei Bernevig B and Dai X 2015 Phys. Rev. X 5 011029
[26] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[27] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Inter. 9 41443
[28] Rhim J W and Kim Y B 2015 Phys. Rev. B 92 1
[29] Huh Y, Moon E G and Kim Y B 2016 Phys. Rev. B 93 1
[30] Lu J L, Luo W, Li X Y, Yang S Q, Cao J X, Gong X G and Xiang H J 2017 Chin. Phys. Lett. 34 057302
[31] Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C Di, Gan L Y, Liu J F, Xu H and Tong S Y 2017 Nanoscale 9 13112
[32] Zhou P, Ma Z S and Sun L Z 2018 J. Mater. Chem. C 6 1206
[33] Feng B, Fu B and Kasamatsu S 2017 Nat. Commun. 8 8
[34] Park S and Yang B J 2017 Phys. Rev. B 96 1
[35] Yang B, Zhang X and Zhao M 2017 Nanoscale 9 8740
[36] Niu C, Buh P M, Zhang H, Bihlmayer G, Wortmann D, Blögel S and Mokrousov Y 2017 arXiv:1703.05540
[37] Blöchl P E 1994 Phys. Rev. B 50 17953
[38] Kresse G J F 1996 Phys. Rev. B 54 11169
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[42] Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Angyán J G 2006 J. Chem. Phys. 124 154709
[43] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[44] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[45] Lopez Sancho M P, Lopez Sancho J M and Rubio J 1984 J. Phys. F Met. Phys. 14 1205
[46] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[47] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[48] Alarco J A, Talbot P C and Mackinnon I D R 2015 Phys. Chem. Chem. Phys. 17 25090
[49] Liu W, Miao M and Liu J Y 2015 J. Mater. Chem. C 3 9921
[50] Zhao Y, Li X, Liu J, Zhang C and Wang Q 2018 J. Phys. Chem. Lett. 9 1815
[51] Wang Y P, Ji W X, Zhang C W, Li P, Wang P J, Kong B, Li S S, Yan S S and Liang K 2017 Appl. Phys. Lett. 110 233107
[52] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[53] Fang C, Weng H, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[54] Zhang W, Luo K, Chen Z, Zhu Z, Yu R, Fang C and Weng H 2019 npj Comput. Mater. 5 1
[55] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[56] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[57] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K L 2011 Nat. Phys. 7 693
[58] Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y and Duan X 2012 Adv. Mater. 24 5782
[59] Rubab A, Baig N, Sher M and Sohail M 2020 Chem. Eng. J. 401 126109
[60] Zuo X, Dias A C, Liu F, Han L, Li H, Gao Q, Jiang X, Li D, Cui B, Liu D and Qu F 2019 Phys. Rev. B 100 115423
[1] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
No Suggested Reading articles found!