Multiple recollisions in nonsequential double ionization below the recollision-ionization threshold
Xiao-Meng Ma(马晓萌)1,2,†, Ai-Hong Tong(童爱红)1,2, Zhuo Wang(王茁)1,2, and Chun-Yang Zhai(翟春洋)3
1 Department of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan 430205, China; 2 Institute of Optoelectronic Materials and Components, Hubei University of Education, Wuhan 430205, China; 3 College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
Abstract By using the three-dimensional classical ensemble model, the recollision dynamics in nonsequential double ionization (NSDI) of Ar by 780-nm laser pulses at (6-1.2)×1014 W/cm2 was extensively studied. We revealed the picture of multiple-recollision in the double ionization events at the laser intensity region below the recollision-ionization threshold. Via tracing the NSDI trajectories, it was found that the contribution of these multiple-recollision events increases as the laser intensity decreases. In this low intensity region, many multiple-recollision induced NSDI trajectories occur through the doubly excited states. The decay speed of the doubly excited state decreases with the decreasing laser intensity.
Fund: Project supported by the Natural Science Foundation of Hubei Province, China (Grant No. 2020CFB362), Scientific Research Program of Hubei Provincial Department of Education, China (Grant No. B2020176), and the National Natural Science Foundation of China (Grant No. 12104389).
Corresponding Authors:
Xiao-Meng Ma
E-mail: maxiaomenghue@126.com
Cite this article:
Xiao-Meng Ma(马晓萌), Ai-Hong Tong(童爱红), Zhuo Wang(王茁), and Chun-Yang Zhai(翟春洋) Multiple recollisions in nonsequential double ionization below the recollision-ionization threshold 2021 Chin. Phys. B 30 123402
[1] I'Huillier A, Lompre L A, Mainfray G and Maus C 1983 Phys. Rev. A27 2503 [2] Fittinghoff D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett.69 2642 [3] Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett.73 1227 [4] Larochelle S, Talebpoury A and Chin S L 1998 J. Phys. B31 1201 [5] Becker A and Faisal F H M 2000 Phys. Rev. Lett.84 3546 [6] Kopold R, Becker W, Rottke H and Sandner W 2000 Phys. Rev. Lett.85 3781 [7] Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett.70 1599 [8] Corkum P B 1993 Phys. Rev. Lett.71 1994 [9] Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo López-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G and Sandner W 2001 Phys. Rev. Lett.87 043003 [10] Wang F, Liu K, Zhang X F, Wang Z, Qin M Y, Liao Q and Lu P X 2019 Phys. Rev. A100 043405 [11] Wang F, Liao Q, Liu K, Qin M Y, Zhang X F, Zhang Q B, Cao W, Pi L W, Zhou Y M and Lu P X 2021 Phys. Rev. A103 013115 [12] Liao Q, Li Y, Qin M Y and Lu P X 2017 Phys. Rev. A96 063408 [13] Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M and Dörner R 2000 Nature405 658 [14] Moshammer R, Ullrich J, Feuerstein B, Fischer D, Dorn A, Schröter C D, Crespo López-Urrutia J R, Höhr C, Rottke H, Trump C, Wittmann M, Korn G, Hoffmann K and Sandner W P 2003 J. Phys. B36 L113 [15] Eremina E, Liu X, Rottke H, Sandner W, Dreischuh A, Lindner F, Grasbon F, Paulus G G, Walther H, Moshammer R, Feuerstein B and Ullrich J 2003 J. Phys. B36 3269 [16] Weckenbrock M, Becker A, Staudte A, Kammer S, Smolarski M, Bhardwaj V R, Rayner D M, Villeneuve D M, Corkum P B and Dörner R 2003 Phys. Rev. Lett.91 123004 [17] Weckenbrock M, Zeidler D, Staudte A, Weber Th, Schöffler M, Meckel M, Kammer S, Smolarski M, Jagutzki O, Bhardwaj V R, Rayner D M, Villeneuve D M, Corkum P B and Dörner R 2004 Phys. Rev. Lett.92 213002 [18] Zeidler D, Staudte A, Bardon A B, Villeneuve D M, Dörner R and Corkum P B 2005 Phys. Rev. Lett.95 203003 [19] Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu Ch Y, Gong Q H, Moshammer R and Ullrich J 2014 Phys. Rev. Lett.112 013003 [20] Liu X and Figueira de Morisson Faria C 2004 Phys. Rev. Lett.92 133006 [21] Huang C, Zhou Y M, Zhang Q B and Lu P X 2013 Optics Exp.21 11382 [22] Tong A H, Zhou Y M and Lu P X 2015 Optics Exp.23 15774 [23] He L X, Lan P F, Zhang Q B, Zhai C Y, Wang F, Shi W J and Lu P X 2015 Phys. Rev. A92 043403 [24] Li Y, Lan P F, Xie H, He M R, Zhu X S, Zhang Q B and Lu P X 2015 Optics Exp.23 28801 [25] Li M, Zhang P, Luo S Q, Zhou Y M, Zhang Q B, Lan P F and Lu P X 2015 Phys. Rev. A92 063404 [26] Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A and R Dörner 2007 Phys. Rev. Lett.99 263002 [27] Chen Zh J, Liang Y Q and Lin C D 2010 Phys. Rev. Lett.104 253201 [28] Rudenko A, de Jesus V L B, Ergler Th, Zrost K, Feuerstein B, Schröter C D, Moshammer R and Ullrich J 2010 Phys. Rev. Lett.99 263003 [29] Zhou Y M, Liao Q and Lu P X 2010 Phys. Rev. A82 053402 [30] Camus N, Fischer B, Kremer M, Sharma V, Rudenko A, Bergues B, Kübel M, Johnson N G, Kling M F, Pfeifer T, Ullrich J and Moshammer R 2012 Phys. Rev. Lett.108 073003 [31] Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P and DiMauro L F 2009 Nat. Phys.5 335 [32] Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y and Xu Z Z 2009 Phys. Rev. Lett.103 093001 [33] Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M, Liu X, Hao X L, Li W D, He X T and Chen J 2012 Phys. Rev. Lett.109 043001 [34] Pullen M G, Dura J, Wolter B, Baudisch M, Hemmer M, Camus N, Senftleben A, Schroeter C D, Moshammer R, Ullrich J and Biegert J 2014 J. Phys. B47 204010 [35] Liu Y Q, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R and Ullrich J 2008 Phys. Rev. Lett.101 053001 [36] Ye D F, Li M, Fu L B, Liu J, Gong Q H, Liu Y Q and Ullrich J 2015 Phys. Rev. Lett.115 123001 [37] Wolter B, Pullen M G, Baudisch M, Sclafani M, Hemmer M, Senftleben A, Schröter C D, Ullrich J, Moshammer R and Biegert J 2015 Phys. Rev. X5 021034 [38] Panfili R, Haan S L and Eberly J H 2002 Phys. Rev. Lett.89 113001 [39] Ho Phay J, Panfili R, Haan S L and Eberly J H 2005 Phys. Rev. Lett.94 093002 [40] Haan S L, Van Dyke J S and Smith Z S 2008 Phys. Rev. Lett101 113001 [41] Ye D F, Liu X and Liu J 2008 Phys. Rev. Lett.101 233003 [42] Zhou Y M, Liao Q and Lu P X 2009 Phys. Rev. A80 023412 [43] Zhou Y M, Huang C, Liao Q and Lu P X 2012 Phys. Rev. Lett109 053004 [44] Zhou Y M, Zhang Q, Huang C and Lu P X 2012 Phys. Rev. A86 043427 [45] Xu T T, Ben S, Wang T, Zhang J, Guo J and Liu X S 2015 Phys. Rev. A92 033405 [46] Tong A H, Li Q G, Ma X M, Zhou Y M and Lu P X 2019 Optics Exp.27 6415 [47] Huang C, Zhong M and Wu Z 2018 Sci. Rep.8 8772 [48] Ma X M, Zhou Y M, Li N, Li M and Lu P X 2018 Optics and Laser Technology108 235 [49] Ma X M, Zhou Y M, Chen Y B, Li M, Li Y, Zhang Q B and Lu P X 2019 Optics Exp.27 1825 [50] Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. Phys.48 35
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.