|
|
Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system |
Chenguang Ma(马晨光)1, Santo Banerjee3, Li Xiong(熊丽)1,2, Tianming Liu(刘天明)1, Xintong Han(韩昕彤)1, and Jun Mou(牟俊)1,2,† |
1 School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; 2 School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China; 3 Department of Mathematical Sciences, Giuseppe Luigi Lagrange, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy |
|
|
Abstract A new five-dimensional fractional-order laser chaotic system (FOLCS) is constructed by incorporating complex variables and fractional calculus into a Lorentz-Haken-type laser system. Dynamical behavior of the system, circuit realization and application in pseudorandom number generators are studied. Many types of multi-stable states are discovered in the system. Interestingly, there are two types of state transition phenomena in the system, one is the chaotic state degenerates to a periodical state, and the other is the intermittent chaotic oscillation. In addition, the complexity of the system when two parameters change simultaneously is measured by the spectral entropy algorithm. Moreover, a digital circuit is design and the chaotic oscillation behaviors of the system are verified on this circuit. Finally, a pseudo-random sequence generator is designed using the FOLCS, and the statistical characteristics of the generated pseudo-random sequence are tested with the NIST-800-22. This study enriches the research on the dynamics and applications of FOLCS.
|
Received: 10 February 2021
Revised: 07 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
05.45.Jn
|
(High-dimensional chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62061014) and the Natural Science Foundation of Liaoning Province, China (Grant No. 2020-MS-274). |
Corresponding Authors:
Jun Mou
E-mail: moujun@csu.edu.cn
|
Cite this article:
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊) Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system 2021 Chin. Phys. B 30 120504
|
[1] Zhang L M, Sun L J, Liu W J and He S B 2017 Chin. Phys. B 26 100504 [2] Chai X L, Wu H Y, Gan Z H, Han D J and Chen C R 2020 Inf. Sci. 556 305 [3] Hua Z Y, Zhu Z H, Yi S, Zhang Z and Huang H J 2020 Inf. Sci. 546 1063 [4] Lan R S, He J W, Wang S H, Gu T L and Luo X N 2018 Signal Processing147 133 [5] Wang M X, Wang X Y, Wang C P, Xia Z Q, Zhao H Y, Gao S, Zhou S and Yao N M 2020 Chaos Soliton Fract. 139 110028 [6] Yang F F, Mou J, Liu J, Ma C G and Yan H Z 2020 Signal Processing 169 107373 [7] Xu C, Sun J R and Wang C H 2020 Int. J. Bifurcat. Chaos 30 2050060 [8] Peng Y X, Sun K H and He S B 2020 Chin. Phys. B 29 30502 [9] Liu J, Tong X J, Liu Y, Zhang M and Ma J 2018 Nonlin. Dyn. 93 1149 [10] Li H Z, Hua Z Y, Bao H, Zhu L, Chen M and Bao B C 2020 IEEE Trans. Industrial Electron. 68 9931 [11] Yang F F, Mou J, Ma C G and Cao Y H 2020 Opt. Laser Eng. 129 106031 [12] Xu Q Y, Sun K H, Cao C and Zhu C X 2020 Opt. Laser Eng. 121 203 [13] Han M, Li W J, Feng S B, Qiu T, Chen C L P 2020 IEEE Trans. Neual Networks Learning Sys. 32 2320 [14] Zhang A and Zheng X 2020 Cognitive Neurodynamics 14 849 [15] Zheng J and Hu H P 2020 Chin. Phys. B 29 090502 [16] Abdulaziz, O, A, Alamodi, Sun K H, Chen C and Peng C 2019 Chin. Phys. B 29 20503 [17] Singh J P, Pham V T, Hayat T, Jafari S, Alsaadi F E and Roy B K 2018 Chin. Phys. B 27 100501 [18] Wang G Y, Jin P P, Wang X W, Shen Y R, Yuan F and Wang X Y 2016 Chin. Phys. B 25 090502 [19] Hu X Y, Liu C X and Liu L 2017 Chin. Phys. B 26 110502 [20] Cheng M F, Luo C K, Jiang X X, Deng L, Zhang M M, Ke C J, Fu S N, Tang M, Shum P and Liu D M 2018 J. Lightwave Technol. 39 18072943 [21] Wang L S, Mao X X, Wang A B, Wang Y C, Gao Z S, Li S S, Yan L S 2020 Opt. Lett. 45 4762 [22] Yang Z, Yi L L, Ke J X, Zhu G Q B, Yang Y P and Hu W S 2020 J. Lightwave Technol. 38 4648 [23] Yan S L 2018 Appl. Mech. Mater. 876 147 [24] Li N Q, Nguimdo R M, Locquet A and Citrin D S 2018 Nonlin. Dyn. 92 315 [25] Jiang X, Xiao Y, Xie Y Y, Liu B C, Ye Y C, Song T T, Chai J X and Liu Y 2021 Opt. Commun. 484 126683 [26] Shahzadi R, Anwar S M, Qamar F, Ali M, J. J. P. C. Rodrigues and Alnowami M 2019 IEEE Access 7 57769 [27] Wang D M, Wang L S, Guo Y Y, Wang Y C and Wang A B 2019 Opt. Express 27 3065 [28] Santo B, Papri S and Chowdhury A R 2001 Phys. Lett. A 291 103 [29] Al-Kouz W, Al-Muhtady A, Owhaib W, Al-Dahidi S, Hader M and Abu-Alghanam R 2019 Entropy 21 103 [30] Ran C, Tang X, Wu Z M and Xia G Q 2018 Laser Phys. 28 126202 [31] Kar R 2018 CSI Trans. ICT 7 175 [32] He S, Sun K H, Wang R X. 2018 Eur. Phys. J. Spec. Top. 227 943 [33] Khajehnasiri A A, Afshar Kermani M and Ezzati R 2020 Int. J. Math. Operat. Res. 17 1 [34] Pu Y F, Zhang N and Wang H 2020 IEEE Intellig. Sys. 35 19610601 [35] Pu Y F, Yu B and Yuan X 2020 IEEE Design & Test 38 104 [36] He S B 2020 Front. Appl. Math. Statis. 6 [37] Abdeljawad T 2015 J. Comput. Appl. Math. 297 57 [38] Zhou H W, Yang S and Zhang S Q 2015 Physica A 491 1001 [39] Silva-Juáreza A, Tlelo-Cuautlea E, la Fragab L G and Li R 2020 J. Adv. Res. 25 77 [40] He S B, Sun K H and Wu X M 2020 Phys. Scr. 95 035220 [41] Peng Y X, Sun K H, He S B 2020 Eur. Phys. J. Plus 135 331 [42] He S B, Santo B and Sun K H 2019 Eur. Phys. J. Spec. Top. 228 331 [43] Ye G D, Jiao K X, Wu H S, Pan C and Huang X L 2020 Int. J. Bifurcat. Chaos 30 2050233 [44] Zhou C Y, Li Z J, Zeng Y C and Zhang S 2020 Int. J. Bifurcat. Chaos 29 1950004 [45] Ding D W, Shan X Y, Jun L, Hu Y B, Yang Z L and Ding L H 2020 Mod. Phys. Lett. B 34 2050191 [46] He S B, Sun K H, Wang H H, Mei X Y and Sun Y F 2017 Nonlin. Dyn. 92 85 [47] Yu Y J, Shi M, Kang H Y, Chen M and Bao B C 2020 Nonlin. Dyn. 100 891 [48] Wang M J, Liao X H, Deng Y, Li Z J, Zeng Y C and Ma M L 2019 J. Comput. Nonlin. Dyn. 14 071002 [49] He S B, Santo B and Sun K H 2018 Chaos Soliton Fract. 115 14 [50] Ma C G, Mou J, Liu J, Yang F F and Zhao X 2020 Eur. Phys. J. Plus 135 95 [51] Wang M J, Liao X H, Deng Y, Li Z J and Zeng Y C 2020 Chaos Soliton Fract. 130 109406 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|