Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Fast qubit initialization in a superconducting circuit |
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生)† |
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract We demonstrate an active reset protocol in a superconducting quantum circuit. The thermal population on the excited state of a transmon qubit is reduced through driving the transitions between the qubit and an ancillary qubit. Furthermore, we investigate the efficiency of this approach at different temperatures. The result shows that population in the first excited state can be dropped from 7% to 2.55% in 27 ns at 30 mK. The efficiency improves as the temperature increases. Compared to other schemes, our proposal alleviates the requirements for measurement procedure and equipment. With the increase of qubit integration, the fast reset technique holds the promise of improving the fidelity of quantum control.
|
Received: 23 March 2021
Revised: 28 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
12.20.-m
|
(Quantum electrodynamics)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301802), the National Natural Science Foundation of China (Grant Nos. 61521001, 11474153, and 11890704), and the Key R/D Program of Guangdong Province, China (Grant No. 2018B030326001). |
Corresponding Authors:
Xinsheng Tan
E-mail: txs.nju@gmail.com
|
Cite this article:
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生) Fast qubit initialization in a superconducting circuit 2021 Chin. Phys. B 30 070310
|
[1] Arute F, Arya K, Babbush R, et al. 2020 Science 369 1084 [2] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505 [3] Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247 [4] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 [5] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500 [6] Risté D, Van Leeuwen J G, Ku H S, Lehnert K W and DiCarlo L 2012 Phys. Rev. Lett. 109 050507 [7] Johnson J E, MacKlin C, Slichter D H, Vijay R, Weingarten E B, Clarke J and Siddiqi I 2012 Phys. Rev. Lett. 109 050506 [8] Campagne-Ibarcq P, Flurin E, Roch N, Darson D, Morfin P, Mirrahimi M, Devoret M H, Mallet F and Huard B 2013 Phys. Rev. X 3 021008 [9] Risté D, Bultink C C, Lehnert K W and DiCarlo L 2012 Phys. Rev. Lett. 109 240502 [10] Salathé Y, Kurpiers P, Karg T, Lang C, Andersen C K, Akin A, Krinner S, Eichler C and Wallraff A 2018 Phys. Rev. Appl. 9 034011 [11] Mariantoni M, Wang H, Yamamoto T, et al. 2011 Science 334 61 [12] Reed M D, Johnson B R, Houck A A, DiCarlo L, Chow J M, Schuster D I, Frunzio L and Schoelkopf R J 2010 Appl. Phys. Lett. 96 203110 [13] Grajcar M, Van Der Ploeg S H, Izmalkov A, Il'ichev E, Meyer H G, Fedorov A, Shnirman A and Schön G 2008 Nat. Phys. 4 612 [14] Valenzuela S O, Oliver W D, Berns D M, Berggren K K, Levitov L S and Orlando T P 2006 Science 314 1589 [15] Egger D J, Werninghaus M, Ganzhorn M, Salis G, Fuhrer A, Müller P and Filipp S 2018 Phys. Rev. Appl. 10 044030 [16] Magnard P, Kurpiers P, Royer B, et al. 2018 Phys. Rev. Lett. 121 060502 [17] Basilewitsch D, Schmidt R, Sugny D, Maniscalco S and Koch C P 2017 New J. Phys. 19 113042 [18] Geerlings K, Leghtas Z, Pop I M, Shankar S, Frun-zio L, Schoelkopf R J, Mirrahimi M and Devoret M H 2013 Phys. Rev. Lett. 110 120501 [19] Tan K Y, Partanen M, Lake R E, Govenius J, Ma-suda S and Möttönen M 2017 Nat. Commun. 8 15189 [20] Tuorila J, Stockburger J, Ala-Nissila T, Ankerhold J and Möttönen M 2019 Phys. Rev. Res. 1 13004 [21] Tuorila J, Partanen M, Ala-Nissila T and Möttönen M 2017 npj Quantum Inf. 3 27 [22] Jin X Y, Kamal A, Sears A P, et al. 2015 Phys. Rev. Lett. 114 240501 [23] Sung Y, Ding L, Braumüller J, et al. 2021 Phys. Rev. X 11 021058 [24] Häffner H, Hänsel W, Roos C F, et al. 2005 Nature 438 643 [25] Kubo Y, Ong F R, Bertet P, et al. 2010 Phys. Rev. Lett. 105 140502 [26] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|