ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Paraxial propagation of cosh-Airy vortex beams in chiral medium |
Xiao-Jin Yang(杨小锦)1, Zhen-Sen Wu(吴振森)1, Tan Qu(屈檀)2 |
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 2 School of Electronic Engineering, Xidian University, Xi'an 710071, China |
|
|
Abstract Propagation dynamics of the cosh-Airy vortex (CAiV) beams in a chiral medium is investigated analytically with Huygens-Fresnel diffraction integral formula. The results show that the CAiV beams are split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams with different propagation trajectories in the chiral medium. We mainly investigate the effect of the cosh parameter on the propagation process of the CAiV beams. The propagation characteristics, including intensity distribution, propagation trajectory, peak intensity, main lobe's intensity, Poynting vector, and angular momentum are discussed in detail. We find that the cosh parameter affects the intensity distribution of the CAiV beams but not its propagation trajectory. As the cosh parameter increases, the distribution areas of the LCPV and RCPV beams become wider, and the side lobe's intensity and peak intensity become larger. Besides, the main lobe's intensity of the LCPV and RCPV beams increase with the increase of the cosh parameter at a farther propagation distance, which is confirmed by the variation trend of the Poynting vector. It is significant that we can vary the cosh parameter to control the intensity distribution, main lobe's intensity, and peak intensity of the CAiV beams without changing the propagation trajectory. Our results may provide some support for applications of the CAiV beams in optical micromanipulation.
|
Received: 25 October 2019
Revised: 10 November 2019
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.-p
|
(Wave optics)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61601355 and 61571355), the China Postdoctoral Science Foundation (Grant No. 2016M602770), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2018JM6018 and 2019JQ-405), the Postdoctoral Science Foundation of Shaanxi Province, China, and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Zhen-Sen Wu
E-mail: wuzhs@mail.xidian.edu.cn
|
Cite this article:
Xiao-Jin Yang(杨小锦), Zhen-Sen Wu(吴振森), Tan Qu(屈檀) Paraxial propagation of cosh-Airy vortex beams in chiral medium 2020 Chin. Phys. B 29 034201
|
[1] |
Berry M V and Balazs N L 1979 Am. J. Phys. 47 264
|
[2] |
Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
|
[3] |
Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
|
[4] |
Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2008 Opt. Lett. 33 207
|
[5] |
Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880
|
[6] |
Christodoulides D N 2008 Nat. Photon 2 652
|
[7] |
Polynkin P, Kolesik M and Moloney J 2009 Phys. Rev. Lett. 103 123902
|
[8] |
Polynkin P, Kolesik M, Moloney J V, Siviloglou G A and Christodoulides D N 2009 Science 324 229
|
[9] |
Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S 2013 Nat. Commun 4 2622
|
[10] |
Chong A, Renninger W H, Christodoulides D N and Wise F W 2010 Nat. Photon. 4 103
|
[11] |
Pismen L M 1999 Vortices in Nonlinear Fields (Oxford: Oxford University Press)
|
[12] |
Gibson G, Courtial J and Padgett M J 2004 Opt. Express 12 5448
|
[13] |
Ng J, Lin Z and Chan C T 2010 Phys. Rev. Lett. 104 103601
|
[14] |
Mazilu M, Baumgartl J, Cizmar T and Dholakia K 2009 Proc. SPIE 7430 74300C
|
[15] |
Dai H T, Liu Y J, Luo D and Sun X W 2010 Opt. Lett. 35 4075
|
[16] |
Dai H T, Liu Y J, Luo D and Sun X W 2011 Opt. Lett. 36 1617
|
[17] |
Wang L Y, Zhang J B, Feng L Y, Pang Z H, Zhong T F and Deng D M 2018 Chin. Phys. B 27 054103
|
[18] |
Deng D M, Chen C D, Li H G and Zhao X 2012 Appl. Phys. B 110 433
|
[19] |
Yu W H, Zhao R H, Deng F, Huang J Y, Chen C D, Yang X B, Zhao Y P and Deng D M 2016 Chin. Phys. B 25 044201
|
[20] |
Chen Y Z, Zhao G W, Ye F, Xu C J and Deng D M 2018 Chin. Phys. B 27 104201
|
[21] |
Liu X Y and Zhao D M 2014 Opt. Commun. 321 6
|
[22] |
Cheng K, Xia J S and Zhong X Q 2014 Acta Photon. Sin. 43 0905002
|
[23] |
Cheng Z, Chu X C, Zhao S H and Zhang X W 2015 Chin. J. Lasers 42 1213002
|
[24] |
Zhu W, Guan J, Deng F, Deng D M and Huang J W 2016 Opt. Commun. 380 434.
|
[25] |
Jaggard D L, Mickelson A R and Papas C H 1979 Appl. Phys. 18 211
|
[26] |
Zhuang F, Du X Y and Zhao D M 2011 Opt. Lett. 36 2683
|
[27] |
Zhuang F, Du X Y, Ye Y Q and Zhao D M 2012 Opt. Lett. 37 1871
|
[28] |
Xie J T, Zhang J B, Ye J R, Liu H W, Liang Z Y, Long S J, Zhou K Z and Deng D M 2018 Opt. Express 26 5845
|
[29] |
Hui Y F, Cui Z W, Li Y X, Zhao W J and Han Y P 2018 J. Opt. Soc. Am. A 35 1299
|
[30] |
Hua S, Liu Y W, Zhang H J, Tang L Z and Feng Y C 2017 Opt. Commun. 388 29
|
[31] |
Xie J T, Guo K L, Ye F, Chen S J, Wu X L, Zhang J B and Deng D M 2019 OSA Continuum 2 424
|
[32] |
Zhou K Z, Zhang J B, Mo H R, Chen J H, Yang X L, Lai Z Y, Chen X Y, Yang X B and Deng D M 2018 J. Opt. 20 075601
|
[33] |
Zhang Y C, Song Y J, Chen Z R, Ji J H and Shi Z X 2007 Opt. Lett. 32 292
|
[34] |
Zhao J Y, Zhang P, Deng D M, Liu J J, Gao Y M, Efremidis N K, Christodoulides D N and Chen Z G 2013 Opt. Lett. 38 498
|
[35] |
Deng D M, Gao Y M, Zhao J Y, Zhang P and Chen Z G 2013 Opt. Lett. 38 3934
|
[36] |
Li H H, Wang J G, Tang M M and Li X Z 2017 J. Mod. Opt. 65 314
|
[37] |
Zhou G Q, Chu X X, Chen R P and Zhou Y M 2019 Laser Phys. 29 025001
|
[38] |
Zhou Y M, Xu Y Q and Zhou G Q 2019 Appl. Sci. 9 1817
|
[39] |
Li H H, Wang J G, Tang M M, Cao J X and Li X Z 2018 Opt. Commun. 427 147
|
[40] |
Zhou G Q, Chen R P and Chu X X 2019 Opt. Laser Technol. 116 72
|
[41] |
Stuart A and Collins J 1970 J. Opt. Soc. Am. 60 1168
|
[42] |
Born M and Wolf E 1999 Principles of Optics, 7th Edn. (Cambridge: Cambridge University Press)
|
[43] |
Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
|
[44] |
Pang Z H, Zhang J B, Zhong T F, Feng L Y, Wang L Y and Deng D M 2017 IEEE Photon. J. 9 1506511
|
[45] |
Sztul H I and Alfano R R 2008 Opt. Express 16 9411
|
[46] |
Pang Z H and Deng D M 2017 Opt. Express 25 13635
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|