Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 059101    DOI: 10.1088/1674-1056/27/5/059101
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Simultaneous estimation of aerosol optical constants and size distribution from angular light-scattering measurement signals

Zhen-Zong He(贺振宗), Dong Liang(梁栋), Jun-Kui Mao(毛军逵), Xing-Si Han(韩省思)
Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  The angular light-scattering measurement (ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution (ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis (PCA) is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally, the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.
Keywords:  angular light-scattering measurement method      aerosol optical constants      aerosol size distribution      inverse radiation problem  
Received:  26 December 2017      Revised:  15 January 2018      Accepted manuscript online: 
PACS:  91.67.gp (Aerosols and particles)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  92.60.Mt (Particles and aerosols)  
  43.20.Ye (Measurement methods and instrumentation)  
Fund: Project supported by the Jiangsu Provincial Natural Science Foundation,China (Grant Nos.BK20170800 and BK20160794) and the National Natural Science Foundation of China (Grant No.51606095).
Corresponding Authors:  Jun-Kui Mao     E-mail:  mjkpe@nuaa.edu.cn

Cite this article: 

Zhen-Zong He(贺振宗), Dong Liang(梁栋), Jun-Kui Mao(毛军逵), Xing-Si Han(韩省思) Simultaneous estimation of aerosol optical constants and size distribution from angular light-scattering measurement signals 2018 Chin. Phys. B 27 059101

[1] Zhang Y C, Chen Y M, Fu X B and Luo C 2016 Infrared Phys. Techn. 77 375
[2] Ebert M, Weinbruch S, Rausch A, Gorzawski G, Helas G and Hoffmann P 2002 J. Geophys. Res-Atmos. 107 3
[3] Ebert M, Weinbruch S, Hoffmann P and Ortner H M 2004 Atmos. Environ. 38 6531
[4] Sabatini, Roberto, Richardson and Mark 2013 Infrared Phys. Techn. 56 30
[5] Liu Q, Huang H H, Wang R, Wang G S, Cao Z S, Liu K, Chen W D and Gao X M 2014 Chin. Phys. B 23 064205
[6] Spindler C, Riziq A A and Rudich Y 2007 Aerosol Sci. Tech. 41 1011
[7] Flores J M, Washenfelder R A, Adler G, Lee H J, Segev L and Laskin J 2014 Phys. Chem. Chem. Phys. 16 10629
[8] Han X, Shen J, Yin P, Hu S and Bi D 2014 Opt. Commun. 316 198
[9] Tammet H and Kulmala M 2014 J. Aerosol Sci. 77 145
[10] Tao Z M, Zhang Y C, Liu X Q, Tan K, Shao S X, Hu H L, Zhang G X and Lv Y H 2004 Chin. Phys. B 13 409
[11] He Z Z, Mao J K and Han X S 2017 Optik 145 316
[12] Ren Y T, Qi H, Chen Q, Ruan L M and Tan H P 2015 Opt. Express 23 19328
[13] Ruan L M, Wang X Y, Qi H and Wang S G 2011 J. Aerosol Sci. 42 759
[14] Chen Q X, Yuan Y, Shuai Y and Tan H P 2016 Atmos. Environ. 135 84
[15] Ye M, Wang S, Lu Y, Hu T, Zhu Z and Xu Y 1999 Appl. Opt. 38 2677
[16] Zuo H Y and Yang J G 2007 Acta Phys. Sin. 56 6132(in Chinese)
[17] Ren Y T, Qi H, Yu X Y and Ruan L M 2017 Opt. Commun. 389 258
[18] Si F Q, Liu J G, Xie P H, Zhang Y J, Liu W Q, Kuze H, Liu C and Lagrosas N 2005 Chin. Phys. B 14 2360
[19] Wang Y, Liang G and Pan Z 2010 Particuology 8 365
[20] Mroczka J and Szczuczyński D 2013 J. Quant. Spectrosc. Ra. 129 48
[21] Vargas-Ubera J, Aguilar J F and Gale D M 2007 Appl. Opt. 46 124
[22] Dombrovsky L A and Baillis D 2010 Thermal Radiation in Disperse Systems:An Engineering Approach, (New York:Begell House) pp. 135-244
[23] Modest M F 2013 Radiative Heat Transfer (3rd Edn.) (New York:McGraw-Hill) pp. 387-437
[24] Sun X G, Tang H and Dai J M 2009 Powder Technol. 190 292
[25] He Z Z, Hong Q, Chen Q and Ruan L M 2016 Particuology 28 6
[26] Yuan Y, Yi H L, Shuai Y, Wang F Q and Tan H P 2010 J. Quant. Spectrosc. Ra. 111 2106
[27] Aerosol robotic network (AERONET). 2014. NASA
[28] Kamrunnahar M, Braatz R D and Alkire R C 2004 J. Electrochem. Soc. 151 90
[29] Jolliffe I 2002 Principal Component Analysis (Wiley Online Library) pp. 513-520
[30] Chiang L H and Pell RJ 2004 J. Process Contr. 14 143
[31] Tang H and Lin J Z 2013 J. Quant. Spectrosc. Ra. 115 78
[32] He Z Z, Mao J K and Han X S 2018 Powder Technol. 325 510
No related articles found!
No Suggested Reading articles found!