ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Scattering of a single photon in a one-dimensional coupled resonator waveguide with a Λ-type emitter assisted by an additional cavity |
Ming-Xia Li(厉鸣夏), Jie Yang(杨洁), Gong-Wei Lin(林功伟), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆) |
East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract We analyze the transport property of a single photon in a one-dimensional coupled resonator waveguide coupled with a Λ-type emitter assisted by an additional cavity. The reflection and transmission coefficients of the inserted photon are obtained by the stationary theory. It is shown that the polarization state of the inserted photon can be converted with high efficiency. This study may inspire single-photon devices for scalable quantum memory.
|
Received: 03 November 2017
Revised: 16 January 2018
Accepted manuscript online:
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11674094,11474092,and 11774089). |
Corresponding Authors:
Jie Yang, Gong-Wei Lin
E-mail: yangjie7898@ecust.edu.cn;gwlin@ecust.edu.cn
|
Cite this article:
Ming-Xia Li(厉鸣夏), Jie Yang(杨洁), Gong-Wei Lin(林功伟), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆) Scattering of a single photon in a one-dimensional coupled resonator waveguide with a Λ-type emitter assisted by an additional cavity 2018 Chin. Phys. B 27 054206
|
[13] |
Chang Y, Gong Z R and Sun C P 2011 Phys. Rev. A 83 013825
|
[1] |
Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
|
[14] |
Fong P T and Law C K 2017 Phys. Rev. A 96 023842
|
[2] |
Andreas R and Gerhard R 2015 Rev. Mod. Phys. 87 1379
|
[15] |
Sánchez-Burillo E, Zueco D, Martín-Moreno L and García-Ripoll J J 2017 Phys. Rev. A 96 023831
|
[3] |
Kimble H J 2008 Nature 453 1023
|
[16] |
Shi T, Wu Y H, González-Tudela A and Cirac J I 2016 Phys. Rev. X 6 021027
|
[4] |
Xu D Z, Lan H, Shi T, Dong H and Sun C P 2010 Sci. China-Phys. Mech. Astron. 53 1234
|
[17] |
Li C and Song Z 2016 Sci. Rep. 6 20991
|
[5] |
Zhou T, Zang X F, Liu Y S, Chen J and Zhu Y Y 2013 J. Opt. Soc. Am. B 30 978
|
[18] |
Shen J T and Fan S H 2005 Opt. Lett. 30 2001
|
[6] |
Zang X F and Jiang C 2010 J. Phys. B-At. Mol. Opt. 43 215501
|
[19] |
Tadashi M, Yutaka W, Tsunenobu O, Takeru H, Naoki I, Yoshimasa S, Tadashi T and Hidetoshi O 2010 Adv. Mater. 22 3022
|
[7] |
Kenechukwu C O and Shen J T 2015 Opt. Commun. 343 135
|
[20] |
Hai L, Tan L, Feng J S, Xu W B and Wang B 2014 Phys. Rev. Lett. 23 024202
|
[8] |
Liao J Q, Huang J F, Liu Y X, Kuang L M and Sun C P 2009 Phys. Rev. A 80 014301
|
[21] |
Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
|
[9] |
Qin W and Nori F 2016 Phys. Rev. A 93 032337
|
[22] |
Tian T, Xu D Z, Zheng T Y and Sun C P 2013 Eur. Phys. J. D 67 69
|
[10] |
Zhou L, Dong H, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. A 78 063827
|
[23] |
Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett 111 103604
|
[11] |
Huang J S, Li Y L, Xu Z H and Huang Y W 2016 Int. J. Theor. Phys. 55 3934
|
[24] |
Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805
|
[12] |
Almeida G M A, Ciccarello F, Apollaro T J G and Souza A M C 2016 Phys. Rev. A 93 032310
|
[25] |
Wang Z H, Zhou L, Li Y and Sun C P 2014 Phys. Rev. A 89 053813
|
[13] |
Chang Y, Gong Z R and Sun C P 2011 Phys. Rev. A 83 013825
|
[14] |
Fong P T and Law C K 2017 Phys. Rev. A 96 023842
|
[15] |
Sánchez-Burillo E, Zueco D, Martín-Moreno L and García-Ripoll J J 2017 Phys. Rev. A 96 023831
|
[16] |
Shi T, Wu Y H, González-Tudela A and Cirac J I 2016 Phys. Rev. X 6 021027
|
[17] |
Li C and Song Z 2016 Sci. Rep. 6 20991
|
[18] |
Shen J T and Fan S H 2005 Opt. Lett. 30 2001
|
[19] |
Tadashi M, Yutaka W, Tsunenobu O, Takeru H, Naoki I, Yoshimasa S, Tadashi T and Hidetoshi O 2010 Adv. Mater. 22 3022
|
[20] |
Hai L, Tan L, Feng J S, Xu W B and Wang B 2014 Phys. Rev. Lett. 23 024202
|
[21] |
Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
|
[22] |
Tian T, Xu D Z, Zheng T Y and Sun C P 2013 Eur. Phys. J. D 67 69
|
[23] |
Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett 111 103604
|
[24] |
Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805
|
[25] |
Wang Z H, Zhou L, Li Y and Sun C P 2014 Phys. Rev. A 89 053813
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|