Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054206    DOI: 10.1088/1674-1056/27/5/054206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Scattering of a single photon in a one-dimensional coupled resonator waveguide with a Λ-type emitter assisted by an additional cavity

Ming-Xia Li(厉鸣夏), Jie Yang(杨洁), Gong-Wei Lin(林功伟), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆)
East China University of Science and Technology, Shanghai 200237, China
Abstract  

We analyze the transport property of a single photon in a one-dimensional coupled resonator waveguide coupled with a Λ-type emitter assisted by an additional cavity. The reflection and transmission coefficients of the inserted photon are obtained by the stationary theory. It is shown that the polarization state of the inserted photon can be converted with high efficiency. This study may inspire single-photon devices for scalable quantum memory.

Keywords:  one-dimensional waveguide      photon scattering      quantum memory  
Received:  03 November 2017      Revised:  16 January 2018      Accepted manuscript online: 
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.79.Gn (Optical waveguides and couplers)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11674094,11474092,and 11774089).

Corresponding Authors:  Jie Yang, Gong-Wei Lin     E-mail:  yangjie7898@ecust.edu.cn;gwlin@ecust.edu.cn

Cite this article: 

Ming-Xia Li(厉鸣夏), Jie Yang(杨洁), Gong-Wei Lin(林功伟), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆) Scattering of a single photon in a one-dimensional coupled resonator waveguide with a Λ-type emitter assisted by an additional cavity 2018 Chin. Phys. B 27 054206

[13] Chang Y, Gong Z R and Sun C P 2011 Phys. Rev. A 83 013825
[1] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[14] Fong P T and Law C K 2017 Phys. Rev. A 96 023842
[2] Andreas R and Gerhard R 2015 Rev. Mod. Phys. 87 1379
[15] Sánchez-Burillo E, Zueco D, Martín-Moreno L and García-Ripoll J J 2017 Phys. Rev. A 96 023831
[3] Kimble H J 2008 Nature 453 1023
[16] Shi T, Wu Y H, González-Tudela A and Cirac J I 2016 Phys. Rev. X 6 021027
[4] Xu D Z, Lan H, Shi T, Dong H and Sun C P 2010 Sci. China-Phys. Mech. Astron. 53 1234
[17] Li C and Song Z 2016 Sci. Rep. 6 20991
[5] Zhou T, Zang X F, Liu Y S, Chen J and Zhu Y Y 2013 J. Opt. Soc. Am. B 30 978
[18] Shen J T and Fan S H 2005 Opt. Lett. 30 2001
[6] Zang X F and Jiang C 2010 J. Phys. B-At. Mol. Opt. 43 215501
[19] Tadashi M, Yutaka W, Tsunenobu O, Takeru H, Naoki I, Yoshimasa S, Tadashi T and Hidetoshi O 2010 Adv. Mater. 22 3022
[7] Kenechukwu C O and Shen J T 2015 Opt. Commun. 343 135
[20] Hai L, Tan L, Feng J S, Xu W B and Wang B 2014 Phys. Rev. Lett. 23 024202
[8] Liao J Q, Huang J F, Liu Y X, Kuang L M and Sun C P 2009 Phys. Rev. A 80 014301
[21] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[9] Qin W and Nori F 2016 Phys. Rev. A 93 032337
[22] Tian T, Xu D Z, Zheng T Y and Sun C P 2013 Eur. Phys. J. D 67 69
[10] Zhou L, Dong H, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. A 78 063827
[23] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett 111 103604
[11] Huang J S, Li Y L, Xu Z H and Huang Y W 2016 Int. J. Theor. Phys. 55 3934
[24] Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805
[12] Almeida G M A, Ciccarello F, Apollaro T J G and Souza A M C 2016 Phys. Rev. A 93 032310
[25] Wang Z H, Zhou L, Li Y and Sun C P 2014 Phys. Rev. A 89 053813
[13] Chang Y, Gong Z R and Sun C P 2011 Phys. Rev. A 83 013825
[14] Fong P T and Law C K 2017 Phys. Rev. A 96 023842
[15] Sánchez-Burillo E, Zueco D, Martín-Moreno L and García-Ripoll J J 2017 Phys. Rev. A 96 023831
[16] Shi T, Wu Y H, González-Tudela A and Cirac J I 2016 Phys. Rev. X 6 021027
[17] Li C and Song Z 2016 Sci. Rep. 6 20991
[18] Shen J T and Fan S H 2005 Opt. Lett. 30 2001
[19] Tadashi M, Yutaka W, Tsunenobu O, Takeru H, Naoki I, Yoshimasa S, Tadashi T and Hidetoshi O 2010 Adv. Mater. 22 3022
[20] Hai L, Tan L, Feng J S, Xu W B and Wang B 2014 Phys. Rev. Lett. 23 024202
[21] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[22] Tian T, Xu D Z, Zheng T Y and Sun C P 2013 Eur. Phys. J. D 67 69
[23] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett 111 103604
[24] Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805
[25] Wang Z H, Zhou L, Li Y and Sun C P 2014 Phys. Rev. A 89 053813
[1] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[2] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[3] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[4] Quantum light storage in rare-earth-ion-doped solids
Yi-Lin Hua(华怡林), Zong-Quan Zhou(周宗权), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2018, 27(2): 020303.
[5] A high-fidelity memory scheme for quantum data buses
Bo-Yang Liu(刘博阳), Wei Cui(崔巍), Hong-Yi Dai(戴宏毅), Xi Chen(陈希), Ming Zhang(张明). Chin. Phys. B, 2017, 26(9): 090303.
[6] Single-photon scattering by two separated atoms in a supercavity
Wei Zhu(朱伟), Xiao Xiao(肖骁), Duan-Lu Zhou(周端陆), Peng Zhang(张芃). Chin. Phys. B, 2016, 25(6): 064203.
[7] High-fidelity quantum memory realized via Wigner crystals of polar molecules
Xue Peng(薛鹏) and Wu Jian-Zhi(午剑智) . Chin. Phys. B, 2012, 21(1): 010308.
No Suggested Reading articles found!