Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074214    DOI: 10.1088/1674-1056/26/7/074214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Characterization of the pairwise correlations in different quantum networks consisting of four-wave mixers and beamsplitters

Jian Qi(祁健)1, Jun Xin(忻俊)1, Hai-Long Wang(王海龙)1, Jie-Tai Jing(荆杰泰)1,2
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

We investigate the performances of the pairwise correlations (PCs) in different quantum networks consisting of four-wave mixers (FWMs) and beamsplitters (BSs). PCs with quantum correlation in different quantum networks can be verified by calculating the degree of relative intensity squeezing for any pair of all the output fields. More interestingly, the quantum correlation recovery and enhancement are present in the FWM+BS network and the repulsion effect phenomena (signal (idler)–frequency mode cannot be quantum correlated with the other two idler (signal)–frequency modes simultaneously) between the PCs with quantum correlation are predicted in the FWM+FWM and FWM+FWM+FWM networks. Our results presented here pave the way for the manipulation of the quantum correlation in quantum networks.

Keywords:  pairwise correlation      four-wave mixer      degree of relative intensity squeezing      quantum network  
Received:  05 December 2016      Revised:  03 March 2017      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  34.80.Pa (Coherence and correlation)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grants Nos.91436211,11374104,and 10974057),the Natural Science Foundation of Shanghai,China (Grant No.17ZR1442900),the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No.20130076110011),the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning,the Program for New Century Excellent Talents in University,China (Grant No.NCET-10-0383),the Shu Guang Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,China (Grant No.11SG26),the Shanghai Pujiang Program,China (Grant No.09PJ1404400),the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,National Basic Research Program of China (Grant No.2016YFA0302103),and the Program of State Key Laboratory of Advanced 207 Optical Communication Systems and Networks,China (Grant No.2016GZKF0JT003).

Corresponding Authors:  Hai-Long Wang, Jie-Tai Jing     E-mail:  wanghai55667788@126.com;jtjing@phy.ecnu.edu.cn

Cite this article: 

Jian Qi(祁健), Jun Xin(忻俊), Hai-Long Wang(王海龙), Jie-Tai Jing(荆杰泰) Characterization of the pairwise correlations in different quantum networks consisting of four-wave mixers and beamsplitters 2017 Chin. Phys. B 26 074214

[1] Kimble H J 2008 Nature 453 1023
[2] Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[3] Borsten L, Dahanayake D, Duff M J, Rubens W and Ebrahim H 2008 Phys. Rev. A 80 032326
[4] Acín A, Bru\ss D, Lewenstein A and Sanpera A 2001 Phys. Rev. Lett. 87 040401
[5] Borsten L, Dahanayake D, Duff M J, Marrani A and Rubens W 2010 Phys. Rev. Lett. 105 100507
[6] McCormcik C F, Boyer V, Arimondo E and Lett P D 2007 Opt. Lett. 32 178
[7] Boyer V, Marino A M and Lett P D 2008 Phys. Rev. Lett. 100 143601
[8] Boyer V, Marino A M, Pooser R C and Lett P D 2008 Science 321 544
[9] Marino A M, Pooser R C, Boyer V and Lett P D 2009 Nature 457 859
[10] Pooser R C, Marino A M, Boyer V, Jones K M and Lett P D 2009 Phys. Rev. Lett. 103 010501
[11] Lawrie B J, Evans P G and Pooser R C 2013 Phys. Rev. Lett. 110 156802
[12] Lawrie B J and Pooser R C 2013 Opt. Express 21 7549
[13] Clark J B, Glasser R T, Glorieux Q, Vogl U, Li T, Jones K M and Lett P D 2014 Nat. Photonics 8 515
[14] Otterstrom N, Pooser R C and Lawrie B J 2014 Opt. Lett. 39 6533
[15] Pooser R C and Lawrie B J 2015 Optica 2 393
[16] Fan W J, Lawrie B J and Pooser R C 2015 Phys. Rev. A 92 053812
[17] Embrey C S, Turnbull M T, Petrov P G and Boyer V 2015 Phys. Rev. X 5 031004
[18] Vogl U, Glasser R T and Lett P D 2012 Phys. Rev. A 86 031806
[19] Vogl U, Glasser R T, Glorieux Q, Clark J B, Corzo N V and Lett P D 2013 Phys. Rev. A 87 010101
[20] Vogl U, Glasser R T, Clark J B, Glorieux Q, Li T, Corzo N V and Lett P D 2014 New J. Phys. 16 013011
[21] Fang Y M, Feng J L, Cao L M, Wang Y X and Jing J T 2016 Appl. Phys. Lett. 108 131106
[22] Jing J T, Liu C J, Zhou Z F, Ou Z Y and Zhang W P 2011 Appl. Phys. Lett. 99 011110
[23] Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y and Zhang W P 2014 Nat. Commun. 5 3049
[24] Qin Z Z, Cao L M, Wang H L, Marino A M, Zhang W P and Jing J T 2014 Phys. Rev. Lett. 113 023602
[25] Cai Y, Feng J L, Wang H L, Ferrini G, Xu X Y, Jing J T and Treps N 2015 Phys. Rev. A 91 013843
[26] Wang H L, Zheng Z, Wang Y X and Jing J T 2016 Opt. Express 24 23459
[27] Wang H L, Cao L M and Jing J T 2016 Sci. Rep. 7 40410
[28] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[29] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[30] Rigolin G, Oliveira T R and Oliveira M C 2006 Phys. Rev. A 74 022314
[31] Jasperse M, Turner L D and Scholten R E 2011 Opt. Express 19 3765
[1] Quantum multicast communication over the butterfly network
Xing-Bo Pan(潘兴博), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), Zhao Dou(窦钊), Zong-Peng Li(李宗鹏), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(1): 010305.
[2] Quantum light storage in rare-earth-ion-doped solids
Yi-Lin Hua(华怡林), Zong-Quan Zhou(周宗权), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2018, 27(2): 020303.
[3] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[4] Efficient schemes of joint remote preparation with a passive receiver via EPR pairs
Ma Song-Ya (马松雅), Gao Cong (高聪), Luo Ming-Xing (罗明星). Chin. Phys. B, 2015, 24(11): 110308.
[5] A full quantum network scheme
Ma Hai-Qiang (马海强), Wei Ke-Jin (韦克金), Yang Jian-Hui (杨建会), Li Rui-Xue (李瑞雪), Zhu Wu (朱武). Chin. Phys. B, 2014, 23(10): 100307.
[6] Network-topology-adaptive quantum conference protocols
Zhang Sheng(张盛), Wang Jian(王剑), Tang Chao-Jing(唐朝京), and Zhang Quan(张权) . Chin. Phys. B, 2011, 20(8): 080306.
[7] A quantum network for implementation of the optimal quantum cloning
Dai Jie-Lin(戴结林) and Zhang Wen-Hai(张文海). Chin. Phys. B, 2009, 18(2): 426-429.
[8] The queueing model for quantum key distribution network
Wen Hao(温浩), Han Zheng-Fu(韩正甫), Guo Guang-Can(郭光灿), and Hong Pei-Lin(洪佩琳). Chin. Phys. B, 2009, 18(1): 46-50.
No Suggested Reading articles found!