Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 015201    DOI: 10.1088/1674-1056/26/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Fluid simulation of the pulsed bias effect on inductively coupled nitrogen discharges for low-voltage plasma immersion ion implantation

Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Xue-Chun Li(李雪春), You-Nian Wang(王友年)
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  Planar radio frequency inductively coupled plasmas (ICP) are employed for low-voltage ion implantation processes, with capacitive pulse biasing of the substrate for modulation of the ion energy. In this work, a two-dimensional (2D) self-consistent fluid model has been employed to investigate the influence of the pulsed bias power on the nitrogen plasmas for various bias voltages and pulse frequencies. The results indicate that the plasma density as well as the inductive power density increase significantly when the bias voltage varies from 0 V to -4000 V, due to the heating of the capacitive field caused by the bias power. The N+ fraction increases rapidly to a maximum at the beginning of the power-on time, and then it decreases and reaches the steady state at the end of the glow period. Moreover, it increases with the bias voltage during the power-on time, whereas the N2+ fraction exhibits a reverse behavior. When the pulse frequency increases to 25 kHz and 40 kHz, the plasma steady state cannot be obtained, and a rapid decrease of the ion density at the substrate surface at the beginning of the glow period is observed.
Keywords:  fluid simulation      low-voltage plasma immersion ion implantation      N2 inductive discharge  
Received:  23 July 2016      Revised:  01 September 2016      Accepted manuscript online: 
PACS:  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  52.65.-y (Plasma simulation)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175034, 11335004, and 11405019) and the Important National Science and Technology Specific Project of China (Grant No. 2011 ZX 02403-001).
Corresponding Authors:  You-Nian Wang     E-mail:  ynwang@dlut.edu.cn

Cite this article: 

Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Xue-Chun Li(李雪春), You-Nian Wang(王友年) Fluid simulation of the pulsed bias effect on inductively coupled nitrogen discharges for low-voltage plasma immersion ion implantation 2017 Chin. Phys. B 26 015201

[1] Husein I F, Chan C, Qin S and Chu P K 2000 J. Phys. D:Appl. Phys. 33 2869
[2] Qin S and Chan C 1994 J. Vac. Sci. Technol. B 12 962
[3] Qian X Y, Cheung N W, Lieberman M A, Current M I, Chu P K, Harrington W L, Magee C W and Botnick E M 1991 Nucl. Instrum. Meth. Phys. Res. B 55 821
[4] Shao J, Jones E C and Chenug N W 1997 Surf. Coat. Technol. 93 254
[5] Felch S B, Lee B S, Daryanani S L, Downey D F and Matyi R J 1998 Mater. Chem. Phys. 54 37
[6] Tian X B, Zeng Z M, Tang B Y, Kwok T K and Chu P K 2000 Surf. Coat. Technol. 128 226
[7] Tian X B, Zeng Z M, Zhang T, Tang B Y and Chu P K 2000 Thin Solid Films 366 150
[8] Mukherjee S, Raole P M and John P I 2002 Surf. Coat. Technol. 157 111
[9] Baumvol I J R, Krug C, Stedile F C, Green M L, Jacobson D C, Eaglesham D, Bernstein J D, Shao J, Denholm A S and Kellerman P L 1999 Appl. Phys. Lett. 74 806
[10] Tian X B, Zeng Z M, Zeng X C, Tang B Y and Chu P K 2000 J. Appl. Phys. 88 2221
[11] Mukherjee S and John P I 1997 Surf. Coat. Technol. 93 188
[12] Chu P K, Qin S, Chan C, Cheung N W and Larson L A 1996 Mater. Sci. Eng. R 17 207
[13] Mizuno B, Nakayama I, Takase M, Nakaoka H and Kubota M 1996 Surf. Coat. Technol. 85 51
[14] Cheung N W 1994 Nucl. Instrum. Meth. Phys. Res. B 55 811
[15] Qin S and McTeer A 2007 Surf. Coat. Technol. 201 6759
[16] Qin S and McTeer A 2007 Surf. Coat. Technol. 201 6508
[17] Valencia-Alvarado R, de la Piedad-Beneitez A, López-Callejas R, Barocio S R, Mercado-Cabrera A, Peña-Eguiluz R, Muñoz-Castro A E and de la Rosa-Vázquez J 2009 Vacuum 83 S264
[18] Agarwal A and Kushner M J 2005 IEEE Trans. Plasma Sci. 33 252
[19] Agarwal A and Kushner M J 2007 J. Appl. Phys. 101 063305
[20] Chang S J, Wu K Y, Yang Y H, Hwang J, Wu H Y, Pan R P, Lee A P and Kou C S 2007 Thin Solid Films 515 8000
[21] Hebner G A and Miller P A 2000 J. Appl. Phys. 87 7660
[22] Wang Y H, Liu W, Zhang Y R and Wang Y N 2015 Chin. Phys. B 24 095203
[23] Liang Y S, Zhang Y R and Wang Y N 2016 Chin. Phys. B 25 105206
[24] Sun X Y, Zhang Y R, Li X C and Wang Y N 2015 Phys. Plasmas 22 053508
[25] Si X J, Zhao S X, Xu X, Bogaerts A and Wang Y N 2011 Phys. Plasmas 18 033504
[26] Zhang Y R, Gao F, Li X C, Bogaerts A and Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303
[27] Wen D Q, Zhang Q Z, Jiang W, Song Y H, Bogaerts A and Wang Y N 2014 J. Appl. Phys. 115 233303
[28] Liu W, Wen D Q, Zhao S X, Gao F and Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035
[29] Li X C and Wang Y N 2006 Thin Solid Films 506 307
[30] Nitschke T E and Graves D B 1994 J. Appl. Phys. 76 5646
[31] Hammond E P, Mahesh K and Moin P 2002 J. Comput. Phys. 176 402
[32] Maday Y, Patera A T and Ronquist E M 1990 J. Sci. Comput. 5 263
[33] Boris J P, Landsberg A M, Oran E S and Gardner J H 1993 LCPFCT-Flux-corrected Transport Algorithm for Solving Generalized Continuity Equations, NRL Memorandum Report No. 6410-93-7192
[34] Sun G and Trueman C W 2003 Electron. Lett. 39 595
[35] Bogaerts A 2009 Spectrochimica. Acta Part B 64 126
[36] Gudmundsson J T 2005 Tech. Report No. RH-09-2005
[37] http://www.lxcat.laplace.univ-tlse.fr/
[38] Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31
[39] Liang Y S, Liu Y X, Zhang Y R and Wang Y N 2015 J. Appl. Phys. 117 083301
[40] Cosby P C 1993 J. Chem. Phys. 98 9544
[41] Guerra V and Loureiro J 1997 Plasma Sources Sci. Technol. 6 361
[42] Levaton J, Amorim J, Souza A R, Franco D and Ricard A 2002 J. Phys. D:Appl. Phys. 35 689
[43] Thorsteinsson E G and Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045001
[44] Stewart R A and Lieberman M A 1991 J. Appl. Phys. 70 3481
[45] Kim G H, Rim G H and Nikiforov S A 2001 Surf. Coat. Technol. 136 255
[46] Cho J, Han S, Lee Y, Kim O K, Kim G H, Kim Y W, Lim H and Suh M 2001 Surf. Coat. Technol. 136 106
[1] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[2] Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges
Ying-Shuang Liang(梁英爽), Yu-Ru Zhang(张钰如), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(10): 105206.
[3] Fluid simulation of inductively coupled Ar/O2 plasmas: Comparisons with experiment
Wang Yan-Hui (王艳会), Liu Wei (刘巍), Zhang Yu-Ru (张钰如), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(9): 095203.
[4] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
No Suggested Reading articles found!