INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Low-bias negative differential conductance controlled by electrode separation |
Xiao-Hua Yi(衣晓华), Ran Liu(刘然), Jun-Jie Bi(毕俊杰), Yang Jiao(焦扬), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良) |
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green's function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule.
|
Received: 27 July 2016
Revised: 01 September 2016
Accepted manuscript online:
|
PACS:
|
85.65.+h
|
(Molecular electronic devices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006). |
Corresponding Authors:
Zong-Liang Li
E-mail: lizongliang@sdnu.edu.cn
|
Cite this article:
Xiao-Hua Yi(衣晓华), Ran Liu(刘然), Jun-Jie Bi(毕俊杰), Yang Jiao(焦扬), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良) Low-bias negative differential conductance controlled by electrode separation 2016 Chin. Phys. B 25 128503
|
[1] |
Luo W, Wang R Q, Hu L B and Yang M 2013 Chin. Phys. B 22 047201
|
[2] |
Long M Q, Chen K Q, Wang L L, Zou B S and Shuai Z 2007 Appl. Phys. Lett. 91 233512
|
[3] |
Zeng J, Chen K Q, He J, Zhang X J and Hu W P 2011 Org. Electron. 12 1606
|
[4] |
An X T 2014 Chin. Phys. B 23 107301
|
[5] |
Yu J X, Hou Z W and Liu X Y 2015 Chin. Phys. B 24 067307
|
[6] |
Wu Q H, Zhao P and Liu D S 2013 Chin. Phys. Lett. 30 107304
|
[7] |
Zhao P, Fang C F, Xia C J, Wang Y M, Liu D S and Xie S J 2008 Appl. Phys. Lett. 93 013113
|
[8] |
An Y P, Yang Z Q and Ratner M A 2011 J. Chem. Phys. 135 044706
|
[9] |
Fan Z Q, Zhang Z H, Deng X Q, Tang G P and Chen K Q 2013 Appl. Phys. Lett. 102 023508
|
[10] |
Fan Z Q, Zhang Z H, Qiu M and Tang G P 2011 Phys. Lett. A 375 3314
|
[11] |
Zhao J, Zeng C G, Cheng X, Wang K D, Wang G W, Yang J L, Hou J G and Zhu Q S 2005 Phys. Rev. Lett. 95 045502
|
[12] |
Pan J B, Zhang Z H, Deng X Q, Qiu M and Guo C 2010 Appl. Phys. Lett. 97 203104
|
[13] |
Pan J B, Zhang Z H, Deng X Q, Qiu M and Guo C 2011 Appl. Phys. Lett. 98 013503
|
[14] |
You Y T, Wang M L, Xuxie H N, Wu B, Sun Z Y and Hou X Y 2010 Appl. Phys. Lett. 97 233301
|
[15] |
Islam S M, Banerji P and Banerjee S 2014 Org. Electron. 15 144
|
[16] |
He J and Lindsay S M 2005 J. Am. Chem. Soc. 127 11932
|
[17] |
Xue Y Q, Datta S, Hong S H, Reifenberger R, Henderson J I and Kubiak C P 1999 Phys. Rev. B 59 7852
|
[18] |
Gaudioso J, Lauhon L J and Ho W 2000 Phys. Rev. Lett. 85 1918
|
[19] |
Kratochvilova I, Kocirik M, Zambova A, Mbindyo J, Malloukc T E and Mayer T S 2002 J. Mater. Chem. 12 2927
|
[20] |
Mentovich E D, Kalifa I, Tsukernik A, Caster A, Rosenberg-Shraga N, Marom H, Gozin M and Richter S 2008 Small 4 55
|
[21] |
Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
|
[22] |
Long M Q, Chen K Q, Wang L L, Wan Q, Zou B S and Shuai Z 2008 Appl. Phys. Lett. 92 243303
|
[23] |
Perrin M L, Frisenda R, Koole M, Seldenthuis J S, Gil J A C, Valkenier H, Hummelen J C, Renaud N, Grozema F C, Thijssen J M, Dulić D and van der Zant H S J 2014 Nat. Nanotech. 9 830
|
[24] |
Brandbyge M, Mozos J L, Ordejn P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
|
[25] |
Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.:Condens. Matter 14 2745
|
[26] |
Li Z L, Zhang G P and Wang C K 2011 J. Phys. Chem. C 115 15586
|
[27] |
Liu R, Bao D L, Jiao Y, Wan L W, Li Z L and Wang C K 2014 Acta Phys. Sin. 63 068501 (in Chinese)
|
[28] |
Bao D L, Liu R, Leng J C, Zuo X, Jiao Y, Li Z L and Wang C K 2014 Phys. Lett. A 378 1290
|
[29] |
Liu R, Wang C K and Li Z L 2016 Sci. Rep. 6 21946
|
[30] |
Troullier N and Martins J L 1990 Solid State Commun. 74 613
|
[31] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[32] |
Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
|
[33] |
Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
|
[34] |
Frei M, Aradhya S V, Koentopp M, Hybertsen M S and Venkataraman L 2011 Nano Lett. 11 1518
|
[35] |
Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q and Fan Z Q 2013 Adv. Funct. Mater. 23 2765
|
[36] |
Liu J, Zhu Z, Li C, Zhang Z and Qiu M 2016 Org. Electron. 33 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|