GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Prev
|
|
|
North west cape-induced electron precipitation and theoretical simulation |
Zhen-xia Zhang(张振霞)1, Xin-qiao Li(李新乔)2, Chen-Yu Wang(王辰宇)3, Lun-Jin Chen4 |
1 National Earthquake Infrastructure Service, China Earthquake Administration, Beijing 100045, China; 2 Institute of High Energy Physics, Chinese Academic Sciences, Beijing 100049, China; 3 Peking University, Beijing 100871, China; 4 Department of Physics, University of Texas at Dallas, Richardson, Texas, USA |
|
|
Abstract Enhancement of the electron fluxes in the inner radiation belt, which is induced by the powerful North West Cape (NWC) very-low-frequency (VLF) transmitter, have been observed and analyzed by several research groups. However, all of the previous publications have focused on NWC-induced >100-keV electrons only, based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) and the Geostationary Operational Environmental Satellite (GOES) satellites. Here, we present flux enhancements with 30-100-keV electrons related to NWC transmitter for the first time, which were observed by the GOES satellite at night. Similar to the 100-300-keV precipitated-electron behavior, the low energy 30-100-keV electron precipitation is primarily located east of the transmitter. However, the latter does not drift eastward to the same extent as the former, possibly because of the lower electron velocity. The 30-100-keV electrons are distributed in the L=1.8-2.1 L-shell range, in contrast to the 100-300-keV electrons which are at L=1.67-1.9. This is consistent with the perspective that the energy of the VLF-wave-induced electron flux enhancement decreases with higher L-shell values. We expand upon the rationality of the simultaneous enhancement of the 30-100- and 100-300-keV electron fluxes through comparison with the cyclotron resonance theory for the quasi-linear wave-particle interaction. In addition, we interpret the asymmetry characteristics of NWC electric power distribution in north and south hemisphere by ray tracing model. Finally, we present considerable discussion and show that good agreement exists between the observation of satellites and theory.
|
Received: 16 April 2016
Revised: 27 July 2016
Accepted manuscript online:
|
PACS:
|
94.20.wj
|
(Wave/particle interactions)
|
|
94.30.Tz
|
(Electromagnetic wave propagation)
|
|
93.85.Rt
|
(Seismic methods)
|
|
Fund: Supported by the China Seismo-Electromagnetic Satellite Mission Ground-Based Verification Project of the Administration of Science, Technology, and Industry for National Defense and Asia-Pacific Space Cooperation Organization Project (APSCO-SP/PM-EARTHQUAKE). |
Corresponding Authors:
Zhen-xia Zhang
E-mail: zxzhang@neis.cn
|
Cite this article:
Zhen-xia Zhang(张振霞), Xin-qiao Li(李新乔), Chen-Yu Wang(王辰宇), Lun-Jin Chen North west cape-induced electron precipitation and theoretical simulation 2016 Chin. Phys. B 25 119401
|
[1] |
Reeves G D, Baker D N, Belian R D, Blake J B, Cayton T E, Fennell J F, Friedel R H W, Meier M M, Selesnick R S and Spence H E 1998 Geophys. Res. Lett. 25 3265
|
[2] |
Li X, Baker D N, Temerin M, Cayton T E, Reeves E G D, Christensen R A, Blake J B, Looper M D, Nakamura R and Kannekal S G 1997 J. Geophy. Res. 102 14123
|
[3] |
Su Z, Xiao F, Zheng H, He Z, Zhu H, Zhang M, Shen C, Wang Y, Wang S, Kletzing C, Kurth W, Hospodarsky G, Spence H, Reeves G, Funsten H, Blake J and Baker D 2014 Geophys. Res. Lett. 41 229
|
[4] |
Horne R B, Thorne R M, Shiprits Y Y, Meredith N P, Glauert S A, Smith A J, Kanekal S G, Baker D N, Engebretson M J, Posch J L, Spasojevic M, Inan U S, Pickett J S and Decreau M E 2005 Nature 437 227
|
[5] |
Su Z P, Xiao F L, Zheng H N and Wang S 2011 J. Geophys. Res. 116 A04205
|
[6] |
Thorne R M, Ni B, Tao X and Horne R B 2010 Nature 467 943
|
[7] |
Kimura, I, Matsumoto H, Mukai T, Hashimoto K, Bell T F, Inan U S, Helliwell R A and Katsufrakis J P 1983 J. Geophy. Res. 88 282
|
[8] |
Imhof W L, Reagan J B, Voss H D, Gaines E E, Datlowe D W, Mobilia J, Helliwell R A, Inan U S, Katsufrakis J and Joiner R G 1983 Geophys. Res. Lett. 10 361
|
[9] |
Inan U S, Chang H C and Helliwell R A 1985 J. Geophys. Res. 90 359
|
[10] |
Inan U S, Golkowski M, Casey M K, Moore R C, Peter W, Kulkarni P, Kossey P, Kennedy E, Meth S and Smit P 2007 Geophys. R. L. 34 L02106
|
[11] |
Graf K L, Inan U S, Piddyachiy D, Kulkarni P, Parrot M and Sauvaud J A 2009 J. Geophys. Res. 114 A07205
|
[12] |
Parrot M, Benoist D, Berthelier J J, Blecki J, Chapuis Y, Colin F, Elie F, Fergeau P, Lagoutte D, Lefeuvre F, Legendre C, Lévêque M, Pincon J L, Poirier B, Seran H C and Zamora P 2006 Planet. Space Sci. 54 441
|
[13] |
Sauvaud J A, Moreau T, Maggiolo R, Treilhou J P, Jacquey C, Cross A, Coutelier J, Rouzaud J, Penou E and Gangloff M 2006 Planet. Space Sci. 54 502
|
[14] |
Sauvaud J A, Maggiolo R, Jacquey C, Parrot M, Berthelier J J, Gamble R J and Rodger C J 2008 Geophys. Res. Lett. 35 L09101
|
[15] |
Li X Q, Ma Y Q, Wang P, Wang H Y, Lu H, Zhang X M, Huang J P, Shi F, Yu X X, Xu Y B, Meng X C, Wang H, Zhao X Y and Parrot M 2012 J. Geophys. Res. 117 A04201
|
[16] |
Gamble R J, Rodger C J, Clilverd M A, Sauvaud J A, Thomson N R, Stewart S L, McCormick R J, Parrot M and Berthelier J J 2008 J. Geophys. Res. 113 A10211
|
[17] |
Kernel C F and Petschek H E 1966 J. Geophys. Res. 71 1
|
[18] |
Summers D 2005 J. Geophys. Res. 110 A08213
|
[19] |
Starks M J, Quinn R A, Ginet G P, Albert J M, Sales G S, Reinisch B W and Song P 2008 J. Geophys. Res. 113 A09320
|
[20] |
Schulz M and Lanzerotti L 1974 Particle Diffusion in the Radiation Belts, in Physics and Chemistry in Space 7 (New York:Springer-Verlag) p. 533
|
[21] |
Tao X, Chan A A, Albert J M and Miller J A 2008 J. Geophys. Res. 113 A07212
|
[22] |
Subbotin D A and Shprits Y Y 2009 Space Weather 7 S10001
|
[23] |
Shprits Y Y, Chen L, Ukhorskiy A and Thorne R 2009 J. Geophys. Res. 114 A03219
|
[24] |
Su Z, Zheng H and Wang S 2010 J. Geophys. Res. 115 A06203
|
[25] |
Lenchek A, Singer S and Wentworth R 1961 J. Geophys. Res. 12 66 4027
|
[26] |
Angerami J J and Thomas J O 1964 J. Geophys. Res. 69 4537
|
[27] |
Inan U S, Chang H C and Helliwell R A 1984 J. Geophy. Res. 89 2891
|
[28] |
in't Hout K J and Mishra C 2013 Appl. Numer. Math. 74 83
|
[29] |
Lehtinen N G and Inan U S 2009 Geophys. Res. Lett. 36 L03104
|
[30] |
Zhao S F, Zhang X M, Zhao Z Y, Shen X H and Zhou C 2015 Chin. J. Geophys. 58 2263(in Chinese)
|
[31] |
Kennel C F 1969 Rev. Geophys. 7 379
|
[32] |
Fälthammar C G 1965 J. Geophys. Res. 70 2503
|
[33] |
Su Z, Zhu H, Xiao F, Zong Q, Zhou X, Zheng H, Wang Y, Wang S, Hao Y, Gao Z, He Z, Baker D, Spence H, Reeves G, Blake J and Wygant J 2015 Nat. Commun. 6 10096
|
[34] |
Selesnick R S, Albert J M and Starks M J 2013 J. Geophys. Res. 118 628
|
[35] |
Kennel C F and Engelmann F 1966 Phys. Fluids 9 2377
|
[36] |
Bortnik J, Thorne R M and Inan U S 2008 Geophys. Res. Lett. 35 L21102
|
[37] |
Inan U S, Bell T F and Helliwell R A 1978 J. Geophy. Res. 83 3235
|
[38] |
Tao X and Bortnik J 2010 Nonlin. Processes Geophy. 17 599
|
[39] |
Tao X, Bortnik J, Thorne R M, Albert J M and Li W 2012 Geophys. Res. Lett. 39 L06102
|
[40] |
Tao X, Bortnik J, Albert J M, Thorne R M and Li W 2013 J. Atmospheric Solar-Terrestrial Phys. 99 67
|
[41] |
Hikishima M, Yagitani S, Omura Y and Nagano I 2009 J. Geophy. Res. 114 A10205
|
[42] |
Omura Y and Summers D 2006 J. Geophy. Res. 111 A09222
|
[43] |
Su Z, Xiao F, Zheng H, Shen C, Wang Y and Wang S 2012 J. Geophy. Res. 117 A09222
|
[44] |
Su Z, Zhu H, Xiao F, Zheng H, Shen C, Wang Y and Wang S 2013 J. Geophy. Res. 118 3188
|
[45] |
Su Z, Zheng H and Wang S 2010 J. Geophy. Res. 115 A06203
|
[46] |
Horne R B 1989 J. Geophy. Res. 94 8895
|
[47] |
Chen L J, Bortnik J, Thorne R M, Horne R B and Jordanova V K 2009 Geophys. Res. Lett. 36 L22101
|
[48] |
Chen L J, Thorne R M, Li W and Bortnik J 2013 J. Geophy. Res. 118 1074
|
[49] |
Xiao F L, Chen L J, Zheng H N and Wang S 2007 J. Geophy. Res. 112 A10214
|
[50] |
Zhang Z X, Li X Q, Wu S G, Ma Y Q, Shen X H, Chen H R, Wang P, You X Z and Yuan Y H 2012 Chin. J. Geophys. 55 1581(in Chinese)
|
[51] |
Zhang Z X, Wang C Y, Shen X H, Li X Q and Wu S G 2014 Chin. Phys. B 23 109401
|
[52] |
Zhang Z X, Wang C Y Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401(in Chinese)
|
[53] |
Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y and Wu F 2011 Acta Phys. Sin. 60 039401(in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|