Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 119401    DOI: 10.1088/1674-1056/25/11/119401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

North west cape-induced electron precipitation and theoretical simulation

Zhen-xia Zhang(张振霞)1, Xin-qiao Li(李新乔)2, Chen-Yu Wang(王辰宇)3, Lun-Jin Chen4
1 National Earthquake Infrastructure Service, China Earthquake Administration, Beijing 100045, China;
2 Institute of High Energy Physics, Chinese Academic Sciences, Beijing 100049, China;
3 Peking University, Beijing 100871, China;
4 Department of Physics, University of Texas at Dallas, Richardson, Texas, USA
Abstract  Enhancement of the electron fluxes in the inner radiation belt, which is induced by the powerful North West Cape (NWC) very-low-frequency (VLF) transmitter, have been observed and analyzed by several research groups. However, all of the previous publications have focused on NWC-induced >100-keV electrons only, based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) and the Geostationary Operational Environmental Satellite (GOES) satellites. Here, we present flux enhancements with 30-100-keV electrons related to NWC transmitter for the first time, which were observed by the GOES satellite at night. Similar to the 100-300-keV precipitated-electron behavior, the low energy 30-100-keV electron precipitation is primarily located east of the transmitter. However, the latter does not drift eastward to the same extent as the former, possibly because of the lower electron velocity. The 30-100-keV electrons are distributed in the L=1.8-2.1 L-shell range, in contrast to the 100-300-keV electrons which are at L=1.67-1.9. This is consistent with the perspective that the energy of the VLF-wave-induced electron flux enhancement decreases with higher L-shell values. We expand upon the rationality of the simultaneous enhancement of the 30-100- and 100-300-keV electron fluxes through comparison with the cyclotron resonance theory for the quasi-linear wave-particle interaction. In addition, we interpret the asymmetry characteristics of NWC electric power distribution in north and south hemisphere by ray tracing model. Finally, we present considerable discussion and show that good agreement exists between the observation of satellites and theory.
Keywords:  North West Cape electron precipitation      wave-particle interaction      quasi-linear diffusion equation      ray tracing  
Received:  16 April 2016      Revised:  27 July 2016      Accepted manuscript online: 
PACS:  94.20.wj (Wave/particle interactions)  
  94.30.Tz (Electromagnetic wave propagation)  
  93.85.Rt (Seismic methods)  
Fund: Supported by the China Seismo-Electromagnetic Satellite Mission Ground-Based Verification Project of the Administration of Science, Technology, and Industry for National Defense and Asia-Pacific Space Cooperation Organization Project (APSCO-SP/PM-EARTHQUAKE).
Corresponding Authors:  Zhen-xia Zhang     E-mail:  zxzhang@neis.cn

Cite this article: 

Zhen-xia Zhang(张振霞), Xin-qiao Li(李新乔), Chen-Yu Wang(王辰宇), Lun-Jin Chen North west cape-induced electron precipitation and theoretical simulation 2016 Chin. Phys. B 25 119401

[1] Reeves G D, Baker D N, Belian R D, Blake J B, Cayton T E, Fennell J F, Friedel R H W, Meier M M, Selesnick R S and Spence H E 1998 Geophys. Res. Lett. 25 3265
[2] Li X, Baker D N, Temerin M, Cayton T E, Reeves E G D, Christensen R A, Blake J B, Looper M D, Nakamura R and Kannekal S G 1997 J. Geophy. Res. 102 14123
[3] Su Z, Xiao F, Zheng H, He Z, Zhu H, Zhang M, Shen C, Wang Y, Wang S, Kletzing C, Kurth W, Hospodarsky G, Spence H, Reeves G, Funsten H, Blake J and Baker D 2014 Geophys. Res. Lett. 41 229
[4] Horne R B, Thorne R M, Shiprits Y Y, Meredith N P, Glauert S A, Smith A J, Kanekal S G, Baker D N, Engebretson M J, Posch J L, Spasojevic M, Inan U S, Pickett J S and Decreau M E 2005 Nature 437 227
[5] Su Z P, Xiao F L, Zheng H N and Wang S 2011 J. Geophys. Res. 116 A04205
[6] Thorne R M, Ni B, Tao X and Horne R B 2010 Nature 467 943
[7] Kimura, I, Matsumoto H, Mukai T, Hashimoto K, Bell T F, Inan U S, Helliwell R A and Katsufrakis J P 1983 J. Geophy. Res. 88 282
[8] Imhof W L, Reagan J B, Voss H D, Gaines E E, Datlowe D W, Mobilia J, Helliwell R A, Inan U S, Katsufrakis J and Joiner R G 1983 Geophys. Res. Lett. 10 361
[9] Inan U S, Chang H C and Helliwell R A 1985 J. Geophys. Res. 90 359
[10] Inan U S, Golkowski M, Casey M K, Moore R C, Peter W, Kulkarni P, Kossey P, Kennedy E, Meth S and Smit P 2007 Geophys. R. L. 34 L02106
[11] Graf K L, Inan U S, Piddyachiy D, Kulkarni P, Parrot M and Sauvaud J A 2009 J. Geophys. Res. 114 A07205
[12] Parrot M, Benoist D, Berthelier J J, Blecki J, Chapuis Y, Colin F, Elie F, Fergeau P, Lagoutte D, Lefeuvre F, Legendre C, Lévêque M, Pincon J L, Poirier B, Seran H C and Zamora P 2006 Planet. Space Sci. 54 441
[13] Sauvaud J A, Moreau T, Maggiolo R, Treilhou J P, Jacquey C, Cross A, Coutelier J, Rouzaud J, Penou E and Gangloff M 2006 Planet. Space Sci. 54 502
[14] Sauvaud J A, Maggiolo R, Jacquey C, Parrot M, Berthelier J J, Gamble R J and Rodger C J 2008 Geophys. Res. Lett. 35 L09101
[15] Li X Q, Ma Y Q, Wang P, Wang H Y, Lu H, Zhang X M, Huang J P, Shi F, Yu X X, Xu Y B, Meng X C, Wang H, Zhao X Y and Parrot M 2012 J. Geophys. Res. 117 A04201
[16] Gamble R J, Rodger C J, Clilverd M A, Sauvaud J A, Thomson N R, Stewart S L, McCormick R J, Parrot M and Berthelier J J 2008 J. Geophys. Res. 113 A10211
[17] Kernel C F and Petschek H E 1966 J. Geophys. Res. 71 1
[18] Summers D 2005 J. Geophys. Res. 110 A08213
[19] Starks M J, Quinn R A, Ginet G P, Albert J M, Sales G S, Reinisch B W and Song P 2008 J. Geophys. Res. 113 A09320
[20] Schulz M and Lanzerotti L 1974 Particle Diffusion in the Radiation Belts, in Physics and Chemistry in Space 7 (New York:Springer-Verlag) p. 533
[21] Tao X, Chan A A, Albert J M and Miller J A 2008 J. Geophys. Res. 113 A07212
[22] Subbotin D A and Shprits Y Y 2009 Space Weather 7 S10001
[23] Shprits Y Y, Chen L, Ukhorskiy A and Thorne R 2009 J. Geophys. Res. 114 A03219
[24] Su Z, Zheng H and Wang S 2010 J. Geophys. Res. 115 A06203
[25] Lenchek A, Singer S and Wentworth R 1961 J. Geophys. Res. 12 66 4027
[26] Angerami J J and Thomas J O 1964 J. Geophys. Res. 69 4537
[27] Inan U S, Chang H C and Helliwell R A 1984 J. Geophy. Res. 89 2891
[28] in't Hout K J and Mishra C 2013 Appl. Numer. Math. 74 83
[29] Lehtinen N G and Inan U S 2009 Geophys. Res. Lett. 36 L03104
[30] Zhao S F, Zhang X M, Zhao Z Y, Shen X H and Zhou C 2015 Chin. J. Geophys. 58 2263(in Chinese)
[31] Kennel C F 1969 Rev. Geophys. 7 379
[32] Fälthammar C G 1965 J. Geophys. Res. 70 2503
[33] Su Z, Zhu H, Xiao F, Zong Q, Zhou X, Zheng H, Wang Y, Wang S, Hao Y, Gao Z, He Z, Baker D, Spence H, Reeves G, Blake J and Wygant J 2015 Nat. Commun. 6 10096
[34] Selesnick R S, Albert J M and Starks M J 2013 J. Geophys. Res. 118 628
[35] Kennel C F and Engelmann F 1966 Phys. Fluids 9 2377
[36] Bortnik J, Thorne R M and Inan U S 2008 Geophys. Res. Lett. 35 L21102
[37] Inan U S, Bell T F and Helliwell R A 1978 J. Geophy. Res. 83 3235
[38] Tao X and Bortnik J 2010 Nonlin. Processes Geophy. 17 599
[39] Tao X, Bortnik J, Thorne R M, Albert J M and Li W 2012 Geophys. Res. Lett. 39 L06102
[40] Tao X, Bortnik J, Albert J M, Thorne R M and Li W 2013 J. Atmospheric Solar-Terrestrial Phys. 99 67
[41] Hikishima M, Yagitani S, Omura Y and Nagano I 2009 J. Geophy. Res. 114 A10205
[42] Omura Y and Summers D 2006 J. Geophy. Res. 111 A09222
[43] Su Z, Xiao F, Zheng H, Shen C, Wang Y and Wang S 2012 J. Geophy. Res. 117 A09222
[44] Su Z, Zhu H, Xiao F, Zheng H, Shen C, Wang Y and Wang S 2013 J. Geophy. Res. 118 3188
[45] Su Z, Zheng H and Wang S 2010 J. Geophy. Res. 115 A06203
[46] Horne R B 1989 J. Geophy. Res. 94 8895
[47] Chen L J, Bortnik J, Thorne R M, Horne R B and Jordanova V K 2009 Geophys. Res. Lett. 36 L22101
[48] Chen L J, Thorne R M, Li W and Bortnik J 2013 J. Geophy. Res. 118 1074
[49] Xiao F L, Chen L J, Zheng H N and Wang S 2007 J. Geophy. Res. 112 A10214
[50] Zhang Z X, Li X Q, Wu S G, Ma Y Q, Shen X H, Chen H R, Wang P, You X Z and Yuan Y H 2012 Chin. J. Geophys. 55 1581(in Chinese)
[51] Zhang Z X, Wang C Y, Shen X H, Li X Q and Wu S G 2014 Chin. Phys. B 23 109401
[52] Zhang Z X, Wang C Y Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401(in Chinese)
[53] Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y and Wu F 2011 Acta Phys. Sin. 60 039401(in Chinese)
[1] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[2] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[3] Observation of double pseudowaves in an ion-beam-plasma system
Zi-An Wei(卫子安), Jin-Xiu Ma(马锦秀), Kai-Yang Yi(弋开阳). Chin. Phys. B, 2018, 27(8): 085201.
[4] Asymmetrical mirror optimization for a 140 GHz TE22, 6 quasi-optical mode converter system
Dong Xia(夏冬), Ming Jin(金铭), Ming Bai(白明). Chin. Phys. B, 2017, 26(7): 074101.
[5] Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model
Feng Zhang(张峰), Ning-Ning Zhang(张宁宁), Yi Zhang(张义), Sen Yan(闫森), Song Sun(孙松), Jun Bao(鲍骏), Chen Gao(高琛). Chin. Phys. B, 2017, 26(5): 054201.
[6] Test particle simulations of resonant interactions between energetic electrons and discrete, multi-frequency artificial whistler waves in the plasmasphere
Chang Shan-Shan (常珊珊), Ni Bin-Bin (倪彬彬), Zhao Zheng-Yu (赵正予), Gu Xu-Dong (顾旭东), Zhou Chen (周晨). Chin. Phys. B, 2014, 23(8): 089401.
[7] Study of typical space wave-particle coupling eventspossibly related with seismic activity
Zhang Zhen-Xia (张振霞), Wang Chen-Yu (王辰宇), Shen Xu-Hui (申旭辉), Li Xin-Qiao (李新乔), Wu Shu-Gui (吴书贵). Chin. Phys. B, 2014, 23(10): 109401.
[8] Channel characterization at 120 GHz for future indoor communication systems
Chen Zhen (陈镇), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2013, 22(5): 059201.
[9] Approximate derivative-dependent functional variable separation for quasi-linear diffusion equations with a weak source
Ji Fei-Yu (吉飞宇), Yang Chun-Xiao (杨春晓). Chin. Phys. B, 2013, 22(10): 100202.
[10] Ray tracing/correlation approach to estimation of surface-based duct parameters from radar clutter
Zhao Xiao-Feng(赵小峰), Huang Si-Xun(黄思训), and Sheng Zheng(盛峥). Chin. Phys. B, 2010, 19(4): 049201.
No Suggested Reading articles found!