Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 120501    DOI: 10.1088/1674-1056/23/12/120501
GENERAL Prev   Next  

A generalized Padé approximation method of solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators

Li Zhen-Bo (李震波), Tang Jia-Shi (唐驾时), Cai Ping (蔡萍)
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
Abstract  An intrinsic extension of Padé approximation method, called the generalized Padé approximation method, is proposed based on the classic Padé approximation theorem. According to the proposed method, the numerator and denominator of Padé approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Padé approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Padé approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Padé approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
Keywords:  generalized Padé      approximation method      homoclinic and heteroclinic orbits      strongly nonlinear oscillators  
Received:  11 April 2014      Revised:  23 July 2014      Accepted manuscript online: 
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  02.70.-c (Computational techniques; simulations)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172093 and 11372102) and the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2012B159).
Corresponding Authors:  Li Zhen-Bo     E-mail:  lizhenbo126@126.com

Cite this article: 

Li Zhen-Bo (李震波), Tang Jia-Shi (唐驾时), Cai Ping (蔡萍) A generalized Padé approximation method of solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators 2014 Chin. Phys. B 23 120501

[1] Wiggins S 1990 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer)
[29] Lim C W and Wu B S 2003 Phys. Lett. A 311 365
[30] Hu H 2006 J. Sound Vib. 298 446
[2] Hu Y, Min L Q and Zhen P 2013 Chin. Phys. B 22 110502
[31] Lim C W, Wu B S and Sun W P 2006 J. Sound Vib. 296 1039
[3] Li W Y, Zhang Q C and Wang W 2010 Chin. Phys. B 19 060510
[4] Liu N and Guan Z H 2009 Chin. Phys. B 18 1769
[32] Öziş T and Yildirim A 2007 Comput. Math. Appl. 54 1184
[33] Beléndez A, Méndez D I, Fernández E, Marini S and Pascual I 2009 Phys. Lett. A 373 2805
[5] Lian X M, Hong Y S and Long W 1996 Chin. Phys. 5 890
[6] Feng J J, Zhang Q C, Wang W and Hao S Y 2013 Chin. Phys. B 22 090503
[7] Wang W, Zhang Q C and Tian R L 2010 Chin. Phys. B 19 030517
[8] Tian R L, Yang X W, Cao Q J and Wu Q L 2012 Chin. Phys. B 21 020503
[9] Melnikov V K 1963 On the Stability of the Center for Time Periodic Perturbations (Moscow: Trans. Moscow Math.)
[10] Chen S H, Chen Y Y and Sze K Y 2009 J. Sound Vib. 322 381
[11] Chen S, Chen Y and Sze K 2010 Sci. China: Technol. Sci. 53 692
[12] Cao Y Y, Chung K W and Xu J 2011 Nonlinear Dyn. 64 221
[13] Chen Y Y, Yan L W, Sze K Y and Chen S H 2012 Appl. Math. Mech. 33 1137
[14] Emaci E, Vakakis A F, Andrianov I V and Mikhlin Y 1997 Nonlinear Dyn. 13 327
[15] Martin P and Baker J G A 1991 J. Math. Phys. 32 1470
[16] Mikhlin Y V 2009 J. Sound Vib. 230 971
[17] Manucharyan G V and Mikhlin Y V 2005 J. Appl. Math. Mech. 69 39
[18] Zhang Q C, Feng J J and Wang W 2011 Chin. J. Theor. Appl. Mech. 43 914 (in Chinese)
[19] Feng J J, Zhang Q C and Wang W 2011 Chin. Phys. B 20 090202
[20] Yang P, Chen Y and Li Z B 2008 Chin. Phys. B 17 3953
[21] Baker G A 1975 Essential of Padé Approximants (New York: Academic)
[22] Ryaboy V, Lefebvre R and Moiseyev N 1993 J. Chem. Phys. 99 3509
[23] Chrysos M, Lefebvre R and Atabek O 1994 J. Phys. B: At. Mol. Opt. Phys. 27 3005
[24] Hamdan M N and Shabaneh N H 1997 J. Sound Vib. 199 711
[25] Lin J 1999 Commun. Nonlinear Sci. Numer. Simul. 4 132
[26] Lai S K, Lim C W, Wu B S, Wang C, Zeng Q C and He X F 2009 Appl. Math. Model. 33 852
[27] Feng J, Zhang Q and Wang W 2012 Chaos, Solitons and Fractals 45 950
[28] Wang H and Chung K 2012 Phys. Lett. A 376 1118
[29] Lim C W and Wu B S 2003 Phys. Lett. A 311 365
[30] Hu H 2006 J. Sound Vib. 298 446
[31] Lim C W, Wu B S and Sun W P 2006 J. Sound Vib. 296 1039
[32] Öziş T and Yildirim A 2007 Comput. Math. Appl. 54 1184
[33] Beléndez A, Méndez D I, Fernández E, Marini S and Pascual I 2009 Phys. Lett. A 373 2805
[1] Stochastic resonance in a gain--noise model of a single-mode laser driven by pump noise and quantum noise with cross-correlation between real and imaginary parts under direct signal modulation
Chen Li-Mei(陈黎梅), Cao Li(曹力), and Wu Da-Jin(吴大进). Chin. Phys. B, 2007, 16(1): 123-129.
[2] Influences of quantum noises on direct-modulated properties of 1.3-μm InGaAsP/InP laser diodes
Wang Jun(王俊), Ma Xiao-Yu(马骁宇), Bai Yi-Ming(白一鸣), Cao Li(曹力), and Wu Da-Jin(吴大进). Chin. Phys. B, 2006, 15(9): 2125-2129.
[3] A systematic approximate method for the study of evolution problem beyond rotating wave approximation
Zhang Zheng-Jie (张正阶), Wang Ke-Lin (汪克林), Qin Gan (秦敢). Chin. Phys. B, 2005, 14(7): 1317-1322.
[4] Intensity correlation time of a single-mode laser driven by two coloured noises with coloured cross-correlation with direct signal modulation
Chen Li-Mei (陈黎梅), Cao Li (曹力), Wu Da-Jin (吴大进), Wang Zhong-Long (王忠龙). Chin. Phys. B, 2005, 14(4): 764-770.
[5] Stochastic resonance of bias signal-modulated noise in a single-mode laser
Wang Jun (王俊), Cao Li (曹力), Wu Da-Jin (吴大进). Chin. Phys. B, 2004, 13(11): 1811-1814.
[6] Output power spectrum of a single-mode laser driven by coloured pump and quantum noises with coloured correlation
Han Li-Bo (韩立波), Cao Li (曹力), Wu Da-Jin (吴大进). Chin. Phys. B, 2004, 13(10): 1717-1721.
No Suggested Reading articles found!