Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104501    DOI: 10.1088/1674-1056/23/10/104501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Higher-order differential variational principle and differential equations of motion for mechanical systems in event space

Zhang Xiang-Wu (张相武)a, Li Yuan-Yuan (李院院)a, Zhao Xiao-Xia (赵小侠)a, Luo Wen-Feng (罗文峰)b
a School of Physics and Mechatronic Engineering, Xi'an University of Arts and Science, Xi'an 710065, China;
b School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert-Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
Keywords:  event space      the higher-order d’      Alembert-Lagrange principle      the higher-order time rate of change of force      the higher-order differential equations of motion  
Received:  13 February 2014      Revised:  31 March 2014      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the Science and Technology Program of Xi'an City, China (Grant No. CXY1352WL34).
Corresponding Authors:  Zhang Xiang-Wu     E-mail:  zhxw0215@aliyun.com
About author:  45.20.Jj

Cite this article: 

Zhang Xiang-Wu (张相武), Li Yuan-Yuan (李院院), Zhao Xiao-Xia (赵小侠), Luo Wen-Feng (罗文峰) Higher-order differential variational principle and differential equations of motion for mechanical systems in event space 2014 Chin. Phys. B 23 104501

[1]Synge J L 1960 Classical Dynamics (Berlin: Springer-Verlag)
[2]Rumyantsev V V 1983 Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics (Torino: Science Press)
[3]Mei F X 1988 Acta Mech. Sin. 20 557 (in Chinese)
[4]Mei F X 1988 Acta Armamentarii 9 27 (in Chinese)
[5]Mei F X 1990 Acta Mech. Sin. 6 160
[6]Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)
[7]Mei F X 1988 J. Beijing Inst. Technol. 8 22 (in Chinese)
[8]Luo S K 1991 J. Natural Science of Chengdu University 10 30 (in Chinese)
[9]Luo S K 1992 J. Tianjin Educational Institute 1 12 (in Chinese)
[10]Luo S K 1992 J. Inner Mongolia Normal University 21 29 (in Chinese)
[11]Luo S K 1993 J. Guangxi University 18 52 (in Chinese)
[12]Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 888
[13]Zhang Y 2007 Acta Phys. Sin. 56 655 (in Chinese)
[14]Zhang Y 2008 Acta Phys. Sin. 57 2649 (in Chinese)
[15]Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[16]Mei F X 2003 J. Jiangxi Normal University 27 1 (in Chinese)
[17]Mei F X 2004 Symmetry and Conserved Quantity of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[18]Li Y C, Zhang Y and Liang J H 2000 Appl. Math. Mech. 21 543
[19]Li Y C, Liang J H, Zhang Y and Mei F X 2000 J. Beijing Inst. Technol. 20 21 (in Chinese)
[20]Li Y C, Zhang Y and Liang J H 2001 Acta Mech. Solida Sin. 22 75 (in Chinese)
[21]Xu X J, Mei F X and Qin M C 2005 Acta Phys. Sin. 54 1009 (in Chinese)
[22]Zhang Y 2007 Acta Phys. Sin. 56 3054 (in Chinese)
[23]Zhang Y 2008 Acta Phys. Sin. 57 2643 (in Chinese)
[24]Zhang Y 2008 Commun. Theor. Phys. 50 59
[25]Zhang Y 2009 Chin. Phys. B 18 4636
[26]Zhang Y 2010 Commun. Theor. Phys. 53 166
[27]Jia L Q, Zhang Y Y and Zheng S W 2007 Acta Phys. Sin. 56 649 (in Chinese)
[28]Jia L Q, Zheng S W and Zhang Y Y 2007 Acta Phys. Sin. 56 5575 (in Chinese)
[29]Jia L Q, Luo S K and Zhang Y Y 2007 Acta Phys. Sin. 56 6188 (in Chinese)
[30]Jia L Q, Zhang Y Y and Luo S K 2007 Chin. Phys. 16 3168
[31]Jia L Q, Zhang Y Y, Luo S K and Cui J C 2009 Acta Phys. Sin. 58 2141 (in Chinese)
[32]Hou Q B, Li Y C, Wang J and Xia L L 2007 Chin. Phys. 16 1521
[33]Hou Q B, Li Y C, Xia L L and Wang J 2007 Commun. Theor. Phys. 48 619
[34]Hou Q B, Li Y C, Wang J and Xia L L 2007 Commun. Theor. Phys. 48 795
[35]Zhang B, Fang J H and Zhang W W 2012 Chin. Phys. B 21 070208
[36]Ma S J, Xu X X, Huang P T and Hu L Y 2004 Acta Phys. Sin. 53 3648 (in Chinese)
[37]Ma S J, Liu M P and Huang P T 2005 Chin. Phys. 14 244
[38]Ma S J, Ge W G and Huang P T 2005 Chin. Phys. 14 879
[39]Ma S J, Huang P T, Yan R and Zhao H X 2006 Chin. Phys. 15 2193
[40]Ma S J, Yang X H, Yan R and Huang P T 2006 Commun. Theor. Phys. 45 350
[41]Ma S J, Yang X H and Yan R 2006 Commun. Theor. Phys. 46 309
[42]Yang X H and Ma S J 2006 Chin. Phys. 15 1672
[43]Zhang X W 2005 Acta Phys. Sin. 54 3978 (in Chinese)
[44]Zhang X W 2005 Acta Phys. Sin. 54 4483 (in Chinese)
[45]Zhang X W 2006 Acta Phys. Sin. 55 1543 (in Chinese)
[46]Zhang X W 2006 Acta Phys. Sin. 55 2669 (in Chinese)
[47]Shi Y 2006 Acta Phys. Sin. 55 4991 (in Chinese)
[48]Zhao H X and Ma S J 2008 Commun. Theor. Phys. 49 297
[49]Zhao H X, Ma S J and Shi Y 2008 Commun. Theor. Phys. 49 479
[1] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[2] Poisson theory and integration method of Birkhoffian systems in the event space
Zhang Yi(张毅). Chin. Phys. B, 2010, 19(8): 080301.
[3] Conformal invariance and Noether symmetry, Lie symmetry of holonomic mechanical systems in event space
Zhang Yi(张毅) . Chin. Phys. B, 2009, 18(11): 4636-4642.
[4] Routh method of reduction for Birkhoffian systems in the event space
Zhang Yi (张毅). Chin. Phys. B, 2008, 17(12): 4365-4368.
[5] Unified symmetry of the nonholonomic system of non-Chetaev type with unilateral constraints in event space
Hou Qi-Bao(后其宝), Li Yuan-Cheng(李元成), Wang Jing(王静), and Xia Li-Li(夏丽莉). Chin. Phys. B, 2007, 16(6): 1521-1525.
[6] Hojman conserved quantity for nonholonomic systems of unilateral non-Chetaev type in the event space
Jia Li-Qun(贾利群), Zhang Yao-Yu(张耀宇), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2007, 16(11): 3168-3175.
[7] Discrete variational principle and the first integrals of the conservative holonomic systems in event space
Zhang Hong-Bin (张宏彬), Chen Li-Qun (陈礼群), Liu Rong-Wan (刘荣万). Chin. Phys. B, 2005, 14(5): 888-892.
No Suggested Reading articles found!